Distinguishing Homophily from Peer Influence Through Network Representation Learning

同性恋 计算机科学 推论 社交网络(社会语言学) 可扩展性 机器学习 人工智能 社会化媒体 心理学 社会心理学 万维网 数据库
作者
Xi Chen,Yan Liu,Cheng Zhang
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 1958-1969 被引量:5
标识
DOI:10.1287/ijoc.2022.1171
摘要

Peer influence and homophily are two entangled forces underlying social influences. However, distinguishing homophily from peer influence is difficult, particularly when there is latent homophily caused by unobservable features. This paper proposes a novel data-driven framework that combines the advantages of latent homophily identification and causal inference. Specifically, the approach first utilizes scalable network representation learning algorithms to obtain node embeddings, which are extracted from social network structures. Then, the embeddings are used to control latent homophily in a quasi-experimental design for causal inference. The simulation experiments show that the proposed approach can estimate peer influence more accurately than existing parameterized approaches and data-driven methods. We applied the proposed framework in an empirical study of players’ online gaming behaviors. First, our approach can achieve improved model fitness for estimating peer influence in online games. Second, we discover a heterogeneous effect of peer influence: players with higher tenure and playing levels receive stronger peer influence. Finally, our results suggest that the homophily effect has a stronger influence on players’ behavior than peer influence. Summary of Contribution: The study proposes a novel computational method to separate peer influence from homophily in an online network. Using network embeddings learned from data to control latent homophily, the approach effectively addresses the challenge of correctly identifying peer effects in the absence of randomized experimental conditions. While simplifying the computational process, the method achieves good computational performance, thus effectively helping researchers and practitioners extract useful network information in various online service contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xuhandi发布了新的文献求助10
刚刚
乐乐应助chloe采纳,获得10
刚刚
简单玉米发布了新的文献求助10
刚刚
拉塞尔....完成签到,获得积分10
1秒前
jc完成签到,获得积分10
1秒前
无糖加冰完成签到,获得积分10
1秒前
积极的觅松完成签到 ,获得积分10
3秒前
九姑娘完成签到 ,获得积分10
5秒前
6秒前
果冻橙完成签到,获得积分10
6秒前
李健的小迷弟应助AugustWong采纳,获得10
7秒前
7秒前
予秋发布了新的文献求助10
8秒前
8秒前
9秒前
活力的小小完成签到,获得积分10
10秒前
L2发布了新的文献求助10
11秒前
12秒前
所所应助ddddd采纳,获得10
12秒前
蝶儿完成签到,获得积分10
13秒前
我测你码发布了新的文献求助10
14秒前
14秒前
15秒前
搜集达人应助YY采纳,获得10
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
19秒前
负责御姐完成签到,获得积分10
19秒前
帅气忆秋发布了新的文献求助30
19秒前
20秒前
chloe发布了新的文献求助10
21秒前
丘比特应助阿欢采纳,获得10
21秒前
呐呐呐发布了新的文献求助10
21秒前
L2完成签到,获得积分20
21秒前
mumua发布了新的文献求助10
22秒前
小米发布了新的文献求助10
22秒前
完美世界应助YY-Bubble采纳,获得10
24秒前
灵泽完成签到,获得积分10
24秒前
复杂易形发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495416
求助须知:如何正确求助?哪些是违规求助? 4593079
关于积分的说明 14439690
捐赠科研通 4525895
什么是DOI,文献DOI怎么找? 2479779
邀请新用户注册赠送积分活动 1464575
关于科研通互助平台的介绍 1437425