Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy

医学 无线电技术 磁共振成像 三阴性乳腺癌 乳腺癌 放射科 单变量 接收机工作特性 乳房磁振造影 癌症 多元统计 内科学 机器学习 乳腺摄影术 计算机科学
作者
Mingming Ma,Liangyu Gan,Yinhua Liu,Yuan Jiang,Ling Xin,Yi Liu,Naishan Qin,Yuanjia Cheng,Qian Liu,Ling Xu,Yaofeng Zhang,Xiangpeng Wang,Xiaodong Zhang,Jingming Ye,Xiaoying Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:146: 110095-110095 被引量:37
标识
DOI:10.1016/j.ejrad.2021.110095
摘要

To establish radiomics prediction models based on automatic segmented magnetic resonance imaging (MRI) for predicting the systemic recurrence of triple-negative breast cancer (TNBC) in patients after neoadjuvant chemotherapy (NAC).A total of 147 patients with TNBC who underwent NAC between January 2009 and December 2018 were enrolled in this study. Clinicopathologic data were collected, and the differences between the recurrent and nonrecurrent patients were analyzed by univariate and multivariate analyses. Patients were randomly divided into training and testing sets. The training set consisted of 104 patients (recurrence: 22, nonrecurrence: 82), and the testing set consisted of 43 patients (recurrence: 9, nonrecurrence: 34). To establish the radiomics prediction model, we used a deep learning segmentation model to automatically segment tumor areas on dynamiccontrast-enhanced-MRI images of pre- and post-NAC magnetic resonance examinations. Radiomics features were then extracted from the tumor areas. Three MRI radiomics models were developed in the training set: a radiomics model based on pre-NAC MRI features (model 1), a radiomics model based on post-NAC MRI features (model 2), and a radiomics model based on both pre- and post-NAC MRI features (model 3). A clinical model for predicting systemic recurrence was built in the training set using independent clinical prediction factors. Receiver operating characteristic curve analysis was used to evaluate the performance of the radiomics and clinical models.The clinical model yielded areas under the curve (AUCs) of 0.747 in the training set and 0.737 in the testing set in terms of predicting systemic recurrence. Models 1, 2, and 3 yielded AUCs of 0.879, 0.91, and 0.963 in the training set and 0.814, 0.802, and 0.933 in the testing set, respectively, in terms of predicting systemic recurrence. All of the radiomics models had achieved higher AUCs than the clinical model in the testing set. DeLong test was used to compare the AUCs between the models and indicated that the predictive performance of model 3 was better than the clinical model, and the difference was statistically significant (p < 0.05).The radiomics models built based on the combination of pre- and post-NAC MRI features showed good performance in predicting whether patients with TNBC will have systemic recurrence within 3 years post-NAC. This can help us non-invasively identify which patients are at high risk of recurrence post-NAC, so that we can strengthen follow-up and treatment of these patients. Then the prognosis of these patients might be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jgogo发布了新的文献求助10
1秒前
领导范儿应助胖鲤鱼采纳,获得10
2秒前
钦林完成签到,获得积分10
3秒前
CodeCraft应助素源采纳,获得10
3秒前
共享精神应助哇咔咔采纳,获得10
4秒前
慕青应助PAPA采纳,获得10
5秒前
6秒前
6秒前
Be-a rogue完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
帝国之刃完成签到,获得积分10
9秒前
可口可乐应助wooyh采纳,获得30
9秒前
10秒前
Be-a rogue发布了新的文献求助10
11秒前
zouzou发布了新的文献求助10
12秒前
Much发布了新的文献求助10
12秒前
帝国之刃发布了新的文献求助10
12秒前
jjqqqj发布了新的文献求助10
13秒前
哇咔咔发布了新的文献求助10
15秒前
小袁冲冲冲完成签到,获得积分10
15秒前
ding应助温婉的惜文采纳,获得10
15秒前
ZR14124驳回了Jntm应助
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
二三应助科研通管家采纳,获得100
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
19秒前
waves发布了新的文献求助10
19秒前
20秒前
21秒前
Liufgui应助安详砖家采纳,获得20
21秒前
典雅的路灯完成签到 ,获得积分10
21秒前
铜眼科完成签到,获得积分10
23秒前
哇咔咔完成签到,获得积分10
24秒前
刘启迪发布了新的文献求助10
24秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Sustainability and the Fashion Industry 700
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066408
求助须知:如何正确求助?哪些是违规求助? 3605331
关于积分的说明 11449358
捐赠科研通 3327285
什么是DOI,文献DOI怎么找? 1829277
邀请新用户注册赠送积分活动 899220
科研通“疑难数据库(出版商)”最低求助积分说明 819502