Robust Deep 3-D Blood Vessel Segmentation Using Structural Priors

分割 人工智能 计算机科学 稳健性(进化) 深度学习 基本事实 模式识别(心理学) 推论 图像分割 编码器 卷积神经网络 计算机视觉
作者
Xuelu Li,Raja Bala,Vishal Monga
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2021.3139241
摘要

Deep learning has enabled significant improvements in the accuracy of 3-D blood vessel segmentation. Open challenges remain in scenarios where labeled 3-D segmentation maps for training are severely limited, as is often the case in practice, and in ensuring robustness to noise. Inspired by the observation that 3-D vessel structures project onto 2-D image slices with informative and unique edge profiles, we propose a novel deep 3-D vessel segmentation network guided by edge profiles. Our network architecture comprises a shared encoder and two decoders that learn segmentation maps and edge profiles jointly. 3-D context is mined in both the segmentation and edge prediction branches by employing bidirectional convolutional long-short term memory (BCLSTM) modules. 3-D features from the two branches are concatenated to facilitate learning of the segmentation map. As a key contribution, we introduce new regularization terms that: a) capture the local homogeneity of 3-D blood vessel volumes in the presence of biomarkers; and b) ensure performance robustness to domain-specific noise by suppressing false positive responses. Experiments on benchmark datasets with ground truth labels reveal that the proposed approach outperforms state-of-the-art techniques on standard measures such as DICE overlap and mean Intersection-over-Union. The performance gains of our method are even more pronounced when training is limited. Furthermore, the computational cost of our network inference is among the lowest compared with state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的烨霖完成签到,获得积分10
刚刚
cp1690完成签到,获得积分10
1秒前
1秒前
Owen应助liren采纳,获得10
1秒前
欢喜的早晨完成签到,获得积分10
2秒前
张甜完成签到,获得积分10
2秒前
史永桂完成签到,获得积分10
3秒前
尹冰露发布了新的文献求助10
3秒前
4秒前
清爽的碧空完成签到,获得积分10
4秒前
Duan完成签到 ,获得积分10
4秒前
LHF发布了新的文献求助10
5秒前
xzy998应助zzzz采纳,获得10
5秒前
嗷嗷嗷啊完成签到,获得积分10
6秒前
6秒前
www完成签到 ,获得积分10
7秒前
LL完成签到,获得积分10
7秒前
galvin完成签到,获得积分10
8秒前
他二舅flying完成签到,获得积分10
9秒前
9秒前
8R60d8应助从容的香菇采纳,获得10
9秒前
loading完成签到,获得积分10
10秒前
万默完成签到 ,获得积分10
11秒前
hhhan完成签到,获得积分10
11秒前
称心的南霜完成签到,获得积分10
12秒前
12秒前
Riggle G完成签到,获得积分10
12秒前
1326完成签到,获得积分10
12秒前
小纸人完成签到,获得积分10
12秒前
认真的成风完成签到,获得积分10
13秒前
Hannah完成签到,获得积分10
13秒前
13秒前
铱铱的胡萝卜完成签到,获得积分10
14秒前
yan完成签到,获得积分10
14秒前
14秒前
vampirell完成签到,获得积分0
15秒前
领导范儿应助aaaaa采纳,获得10
15秒前
15秒前
15秒前
xl1990完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092465
求助须知:如何正确求助?哪些是违规求助? 3631157
关于积分的说明 11508750
捐赠科研通 3342173
什么是DOI,文献DOI怎么找? 1836989
邀请新用户注册赠送积分活动 904895
科研通“疑难数据库(出版商)”最低求助积分说明 822641