吸附
甲烷
超临界流体
氢
碳纤维
化学
二氧化碳
氮气
工作(物理)
材料科学
热力学
有机化学
复合材料
物理
复合数
作者
Martin B. Sweatman,N. Quirke
摘要
We describe procedures based on the polydisperse independent ideal slit-pore model, Monte Carlo simulation and density functional theory (a 'slab-DFT') for predicting gas adsorption and adsorption heats in active carbons. A novel feature of this work is the calibration of gas-surface interactions to a high surface area carbon, rather than to a low surface area carbon as in all previous work. Our models are used to predict the adsorption of carbon dioxide, methane, nitrogen, and hydrogen up to 50 bar in several active carbons at a range of near-ambient temperatures based on an analysis of a single 293 K carbon dioxide adsorption isotherm. The results demonstrate that these models are useful for relatively simple gases at near-critical or supercritical temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI