亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluating a decision support system for patient image pre-fetching: An experimental study

阅读(过程) 范围(计算机科学) 水准点(测量) 计算机科学 放射科 图像质量 医学物理学 放射性武器 医学 人工智能 图像(数学) 大地测量学 政治学 程序设计语言 法学 地理
作者
Paul Jen‐Hwa Hu,Chih‐Ping Wei,Olivia R. Liu Sheng
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:42 (3): 1730-1746 被引量:7
标识
DOI:10.1016/j.dss.2006.02.016
摘要

When reading images from a newly taken radiological examination, a radiologist often needs to reference relevant prior images of the same patient to confirm a preliminary diagnosis, compare suspicious radiographic signs, or evaluate the progression of a known underlying pathological process, injury, or abnormality. To mitigate the stress and time requirements for the reading radiologist's image searches, some healthcare organizations have taken a pre-fetching approach to make relevant patient prior images conveniently accessible. Motivated by the importance of patient-image pre-fetching to radiologists' examination readings, as well as by the limited scope and ad hoc evaluation of most previously reported systems, we develop the Image Retrieval Expert System (IRES) and experimentally evaluate its effect on the radiologist's examination-reading efficiency, service quality, and satisfaction using the current pre-fetching practice of the studied organization as a benchmark. Our overall analysis suggests that image pre-fetching has an important effect on radiologists' examination readings and that radiologists (including residents) can become more efficient, effective, and satisfied when supported by IRES pre-fetching than by the benchmark practice. However, the exact magnitude or statistical significance of the IRES-induced improvements may vary with examination category and/or radiologists' experience. Our findings have several important implications for research and patient image management practices, which also are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助子凯采纳,获得10
1秒前
陈杰完成签到,获得积分10
10秒前
子凯完成签到,获得积分10
24秒前
君知完成签到,获得积分10
33秒前
SXR完成签到,获得积分10
41秒前
scm完成签到,获得积分10
44秒前
典雅问寒完成签到,获得积分0
1分钟前
山野完成签到 ,获得积分10
1分钟前
叶子完成签到 ,获得积分10
1分钟前
xiongyh10完成签到,获得积分10
1分钟前
1分钟前
hoshi完成签到,获得积分10
1分钟前
通莲完成签到,获得积分10
1分钟前
1分钟前
通莲发布了新的文献求助10
1分钟前
1分钟前
haojie完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
妖娃娃应助科研通管家采纳,获得10
1分钟前
1分钟前
123开花完成签到 ,获得积分10
2分钟前
科研小白发布了新的文献求助30
2分钟前
牛八先生完成签到,获得积分10
2分钟前
陈__完成签到,获得积分10
2分钟前
情怀应助Sandy采纳,获得10
2分钟前
2分钟前
科研小白完成签到,获得积分20
2分钟前
Yan完成签到,获得积分10
2分钟前
yuanjunhu发布了新的文献求助10
2分钟前
yuanjunhu完成签到,获得积分20
2分钟前
BA1完成签到,获得积分10
2分钟前
LANER完成签到 ,获得积分10
3分钟前
yuqinghui98完成签到 ,获得积分10
3分钟前
leo完成签到 ,获得积分10
3分钟前
小马甲应助科研小白采纳,获得10
3分钟前
科研通AI2S应助可靠的寒风采纳,获得10
3分钟前
资山雁完成签到 ,获得积分10
3分钟前
身法马可波罗完成签到 ,获得积分10
3分钟前
Claudia发布了新的文献求助30
3分钟前
科研通AI5应助xuan采纳,获得10
3分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837288
求助须知:如何正确求助?哪些是违规求助? 3379527
关于积分的说明 10509680
捐赠科研通 3099150
什么是DOI,文献DOI怎么找? 1706955
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772536