Pathological myopia classification with simultaneous lesion segmentation using deep learning

人工智能 分割 病态的 计算机科学 深度学习 病变 模式识别(心理学) 病理 医学
作者
Ruben Hemelings,Bart Elen,Matthew B. Blaschko,Julie A. Jacob,Ingeborg Stalmans,Patrick De Boever
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:199: 105920-105920 被引量:59
标识
DOI:10.1016/j.cmpb.2020.105920
摘要

Pathological myopia (PM) is the seventh leading cause of blindness, with a reported global prevalence up to 3%. Early and automated PM detection from fundus images could aid to prevent blindness in a world population that is characterized by a rising myopia prevalence. We aim to assess the use of convolutional neural networks (CNNs) for the detection of PM and semantic segmentation of myopia-induced lesions from fundus images on a recently introduced reference data set. This investigation reports on the results of CNNs developed for the recently introduced Pathological Myopia (PALM) dataset, which consists of 1200 images. Our CNN bundles lesion segmentation and PM classification, as the two tasks are heavily intertwined. Domain knowledge is also inserted through the introduction of a new Optic Nerve Head (ONH)-based prediction enhancement for the segmentation of atrophy and fovea localization. Finally, we are the first to approach fovea localization using segmentation instead of detection or regression models. Evaluation metrics include area under the receiver operating characteristic curve (AUC) for PM detection, Euclidean distance for fovea localization, and Dice and F1 metrics for the semantic segmentation tasks (optic disc, retinal atrophy and retinal detachment). Models trained with 400 available training images achieved an AUC of 0.9867 for PM detection, and a Euclidean distance of 58.27 pixels on the fovea localization task, evaluated on a test set of 400 images. Dice and F1 metrics for semantic segmentation of lesions scored 0.9303 and 0.9869 on optic disc, 0.8001 and 0.9135 on retinal atrophy, and 0.8073 and 0.7059 on retinal detachment, respectively. We report a successful approach for a simultaneous classification of pathological myopia and segmentation of associated lesions. Our work was acknowledged with an award in the context of the “Pathological Myopia detection from retinal images” challenge held during the IEEE International Symposium on Biomedical Imaging (April 2019). Considering that (pathological) myopia cases are often identified as false positives and negatives in glaucoma deep learning models, we envisage that the current work could aid in future research to discriminate between glaucomatous and highly-myopic eyes, complemented by the localization and segmentation of landmarks such as fovea, optic disc and atrophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JudgeGoodwin完成签到,获得积分10
1秒前
KaiZI完成签到 ,获得积分10
1秒前
旺旺完成签到,获得积分10
2秒前
小龙完成签到,获得积分10
3秒前
糖豆子完成签到,获得积分10
3秒前
科研狗的春天完成签到 ,获得积分10
4秒前
oracl完成签到,获得积分10
5秒前
小白完成签到,获得积分10
7秒前
zombleq完成签到 ,获得积分10
7秒前
简奥斯汀完成签到 ,获得积分10
7秒前
siyukou完成签到 ,获得积分10
8秒前
Yep0672完成签到,获得积分10
8秒前
罗罗诺亚完成签到,获得积分10
9秒前
虚心的仙人掌完成签到,获得积分0
9秒前
lulu完成签到 ,获得积分10
10秒前
迷人耗子精完成签到,获得积分10
10秒前
xcwy完成签到,获得积分10
11秒前
六氟合铂酸氙完成签到 ,获得积分10
12秒前
sunyz完成签到,获得积分0
14秒前
QAQ完成签到,获得积分10
15秒前
chenjun7080完成签到,获得积分10
15秒前
萤火微光完成签到 ,获得积分10
15秒前
Jackcaosky完成签到 ,获得积分10
18秒前
马麻薯完成签到,获得积分10
19秒前
飞流直下完成签到 ,获得积分10
19秒前
小吴完成签到 ,获得积分10
19秒前
Zfx完成签到,获得积分10
20秒前
认真丹亦完成签到 ,获得积分10
20秒前
阔达的水壶完成签到 ,获得积分10
21秒前
徐开心完成签到,获得积分10
22秒前
23秒前
你好我有一个帽衫完成签到,获得积分10
23秒前
24秒前
炼丹炉完成签到,获得积分10
25秒前
杨文志完成签到,获得积分10
26秒前
26秒前
舒适的平蓝完成签到,获得积分10
26秒前
Fashioner8351完成签到,获得积分10
26秒前
小五完成签到 ,获得积分10
26秒前
maxthon完成签到,获得积分10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359417
关于积分的说明 10402560
捐赠科研通 3077261
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743