Probing Atomistic Behavior To Unravel Dielectric Phenomena in Charge Transfer Cocrystals

化学 化学物理 电介质 电荷(物理) 纳米技术 计算化学 光电子学 量子力学 材料科学 物理
作者
Rohit Bhowal,Anina Anju Balaraman,Manasi Ghosh,Soma Dutta,Krishna Kishor Dey,Deepak Chopra
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:143 (2): 1024-1037 被引量:41
标识
DOI:10.1021/jacs.0c11459
摘要

Six new binary charge-transfer (CT) cocrystals have been synthesized by solvent drop-assisted mechanochemical grinding method, and all of them exhibited remarkable color changes during the grinding process. Crystal structure analysis reveals the donor (D) and acceptor (A) molecules have assembled primarily via cofacial π···π stacking interactions displaying mixed D–A–D–A stacked columns. Interestingly these cocrystals exhibited very diverse dielectric response in the presence of an alternating current (ac) external electric field, and their dielectric behavior can be explained from the nature and strength of CT interactions in the cocrystal assembly. Strong CT cocrystals were found to display a rigid supramolecular framework while weakly bound CT complexes allowed its constituent polar molecules to relax and hence the observed rotational dynamics contributed to their dielectric properties. Chemical shift anisotropy parameters, spin–lattice relaxation, and molecular correlation times obtained from 13C solid-state NMR spectroscopy measurements establish the occurrence of molecular dynamics at the atomistic scale in cocrystals, thereby displaying high permittivity. Furthermore, we also propose a strategy directed toward the design of CT cocrystals that allows us to introduce rotational dynamics in noncentrosymmetric molecules, which significantly enhances their dielectric properties due to orientation polarization. The results indicate that D–A-based organic CT systems, particularly with a mixed stack, have a wide range of potential applications in materials science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨阳洋完成签到,获得积分10
刚刚
浩浩大人发布了新的文献求助10
刚刚
刚刚
1秒前
HK完成签到,获得积分10
2秒前
2秒前
Ava应助斗南03采纳,获得10
2秒前
2秒前
4秒前
yyy发布了新的文献求助10
4秒前
4秒前
SciGPT应助Membranes采纳,获得30
5秒前
5秒前
科研通AI5应助ref:rain采纳,获得10
6秒前
6秒前
烟花应助冷傲海蓝采纳,获得10
7秒前
刘一三完成签到 ,获得积分10
8秒前
8秒前
浩浩大人完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
英姑应助奔流的河采纳,获得10
11秒前
11秒前
最爱学习者完成签到,获得积分10
12秒前
Yancy发布了新的文献求助10
12秒前
13秒前
好运连连发布了新的文献求助10
13秒前
14秒前
ding应助平常雨泽采纳,获得10
14秒前
jkr完成签到,获得积分10
15秒前
恬恬发布了新的文献求助10
15秒前
ZHX完成签到,获得积分10
16秒前
字符串完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
却却发布了新的文献求助10
16秒前
17秒前
gosu完成签到 ,获得积分10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358921
关于积分的说明 10398088
捐赠科研通 3076295
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813229
科研通“疑难数据库(出版商)”最低求助积分说明 767599