已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of a Medicare claims-based model predicting left ventricular ejection fraction subtype to investigate the epidemiology of heart failure in the US Medicare program

医学 射血分数 心力衰竭 失代偿 置信区间 队列 内科学 流行病学 心脏病学
作者
Rishi Desai,Mufaddal Mahesri,Kristyn Chin,Raquel Lahoz,Rachel Studer,Muthiah Vaduganathan,Elisabetta Patorno
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:41 (Supplement_2) 被引量:1
标识
DOI:10.1093/ehjci/ehaa946.0962
摘要

Abstract Introduction Administrative claims do not contain ejection fraction (EF) information for heart failure (HF) patients. To address this limitation, we recently developed a claims-based model to classify HF patients into reduced EF (rEF) or preserved EF (pEF) using 35 predictors. Purpose To report distribution of key patient characteristics and rates of HF decompensation and mortality in model-identified rEF and pEF patients from nationwide Medicare claims (2012–2016) and compare with estimates from the literature. Methods We identified HF patients ≥65 years from US Medicare claims using recorded diagnosis after ≥6 months of continuous enrollment. The date of HF diagnosis was the cohort entry date. The 6-month baseline period prior to the cohort entry date was used to identify predictors and apply the claims-based model to distinguish rEF and pEF. Patients were followed for the composite outcome of time to first HF decompensation (HF hospitalization or outpatient IV diuretic treatment) or all-cause mortality. Descriptive statistics were used to summarize baseline patient characteristics. Cumulative incidence estimates along with 95% confidence intervals (CI) were calculated for the composite endpoint as well as all-cause and cause-specific mortality (derived from National Death Index linkage) using the Kaplan-Meier method. Results A total of 3,134,414 HF patients with an average age of 79 years were identified, of which 200,950 (6.4%) were classified as rEF. Among those classified as rEF, men comprised a larger proportion (68% vs 41%), the average age was lower (76 vs 79 years), and history of myocardial infarction was more frequent (32% vs 13%) compared to pEF. One-year cumulative incidence (95% CI) of the composite endpoint was 42.6% (42.4–42.8%) for rEF and 36.9% (36.7–37.0%) for pEF. One-year all-cause mortality incidence was similar between the groups (27.4% [27.2–27.6%] for rEF and 26.4% [26.3–26.4%] for pEF), however, cardiovascular mortality was higher for rEF (16.7% [16.5–16.8%] vs 12.3% [12.2–12.3%]), whereas non-cardiovascular mortality was higher for pEF (12.9% [12.7–13.1%] vs 16.0% (16.0–16.1%) (Figure 1). These results were in line with estimates from other well-established cardiovascular cohorts including the Get With The Guidelines-HF cohort and the Olmstead County HF epidemiology cohort. Conclusion We replicated well-documented differences in key patient characteristics and endpoints between rEF and pEF in these populations identified based on application of a claims-based model. Our results support use of this model for identifying cohorts of rEF and pEF to conduct subtype specific investigations of treatment outcomes. However, a notably lower proportion of patients were identified as having rEF compared to previous reports indicating low sensitivity of this approach for rEF and suggesting that model-based classification may not be useful in tracking subtype specific incidence or prevalence of HF using Medicare claims. Cumulative incidence of outcomes in HF Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): Novartis Inc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小枣完成签到 ,获得积分10
2秒前
TaoJ发布了新的文献求助10
5秒前
乐观期待完成签到,获得积分10
6秒前
ru完成签到 ,获得积分10
8秒前
8秒前
8秒前
资格丘二完成签到 ,获得积分10
8秒前
11秒前
知性的夏之完成签到 ,获得积分10
11秒前
大个应助从容小白菜采纳,获得10
15秒前
哈哈发布了新的文献求助10
16秒前
谦让惜海完成签到 ,获得积分10
17秒前
Fxy完成签到 ,获得积分10
18秒前
19秒前
19秒前
19秒前
Fancy应助科研通管家采纳,获得20
19秒前
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
田同学完成签到,获得积分20
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
GingerF应助科研通管家采纳,获得50
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
心灵美语兰完成签到 ,获得积分10
21秒前
Ye完成签到,获得积分10
22秒前
罗皮特完成签到 ,获得积分10
24秒前
wu完成签到,获得积分10
25秒前
田同学发布了新的文献求助10
26秒前
27秒前
5km完成签到,获得积分10
29秒前
邱宇宸发布了新的文献求助10
32秒前
32秒前
CipherSage应助lishuang采纳,获得10
33秒前
amault完成签到,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779434
求助须知:如何正确求助?哪些是违规求助? 5647681
关于积分的说明 15451875
捐赠科研通 4910775
什么是DOI,文献DOI怎么找? 2642857
邀请新用户注册赠送积分活动 1590536
关于科研通互助平台的介绍 1544921