Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China

土地利用 细胞自动机 土地覆盖 计算机科学 草原 地理 中国 情景分析 土地利用、土地利用的变化和林业 环境资源管理 仿真建模 环境科学 生态学 土木工程 人工智能 数学 工程类 统计 数理经济学 考古 生物
作者
Xun Liang,Qingfeng Guan,Keith Clarke,Shishi Liu,Bingyu Wang,Yao Yao
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:85: 101569-101569 被引量:924
标识
DOI:10.1016/j.compenvurbsys.2020.101569
摘要

Cellular Automata (CA) are widely used to model the dynamics within complex land use and land cover (LULC) systems. Past CA model research has focused on improving the technical modeling procedures, and only a few studies have sought to improve our understanding of the nonlinear relationships that underlie LULC change. Many CA models lack the ability to simulate the detailed patch evolution of multiple land use types. This study introduces a patch-generating land use simulation (PLUS) model that integrates a land expansion analysis strategy and a CA model based on multi-type random patch seeds. These were used to understand the drivers of land expansion and to investigate the landscape dynamics in Wuhan, China. The proposed model achieved a higher simulation accuracy and more similar landscape pattern metrics to the true landscape than other CA models tested. The land expansion analysis strategy also uncovered some underlying transition rules, such as that grassland is most likely to be found where it is not strongly impacted by human activities, and that deciduous forest areas tend to grow adjacent to arterial roads. We also projected the structure of land use under different optimizing scenarios for 2035 by combining the proposed model with multi-objective programming. The results indicate that the proposed model can help policymakers to manage future land use dynamics and so to realize more sustainable land use patterns for future development. Software for PLUS has been made available at https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助年轻的冰海采纳,获得20
3秒前
4秒前
4秒前
8秒前
hahaha发布了新的文献求助10
9秒前
008发布了新的文献求助10
10秒前
摆烂的实验室打工人完成签到,获得积分10
13秒前
13秒前
15秒前
WDS完成签到 ,获得积分10
15秒前
我是老大应助lijinyu采纳,获得10
16秒前
342396102发布了新的文献求助10
18秒前
devilito发布了新的文献求助30
19秒前
呼呼兔完成签到,获得积分10
21秒前
21秒前
昏睡的蟠桃应助Hxq采纳,获得200
22秒前
FashionBoy应助负责的妙松采纳,获得10
22秒前
25秒前
今后应助qianqian采纳,获得10
28秒前
29秒前
安详的自中完成签到,获得积分10
29秒前
lijinyu发布了新的文献求助10
29秒前
DNAdamage发布了新的文献求助10
35秒前
zz完成签到,获得积分10
35秒前
35秒前
lijinyu完成签到,获得积分10
36秒前
41秒前
mogenshen完成签到,获得积分10
41秒前
研友_8KX15L完成签到 ,获得积分10
42秒前
科研通AI5应助Pupil采纳,获得10
43秒前
DNAdamage完成签到,获得积分10
44秒前
Akim应助008采纳,获得10
44秒前
45秒前
46秒前
mogenshen发布了新的文献求助10
46秒前
47秒前
fishhh应助发论文采纳,获得10
49秒前
50秒前
llg发布了新的文献求助10
52秒前
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778900
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218406
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440