Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China

土地利用 细胞自动机 土地覆盖 计算机科学 草原 地理 中国 情景分析 土地利用、土地利用的变化和林业 环境资源管理 仿真建模 环境科学 生态学 土木工程 人工智能 数学 工程类 统计 数理经济学 考古 生物
作者
Xun Liang,Qingfeng Guan,Keith Clarke,Shishi Liu,Bingyu Wang,Yao Yao
出处
期刊:Computers, Environment and Urban Systems [Elsevier BV]
卷期号:85: 101569-101569 被引量:1059
标识
DOI:10.1016/j.compenvurbsys.2020.101569
摘要

Cellular Automata (CA) are widely used to model the dynamics within complex land use and land cover (LULC) systems. Past CA model research has focused on improving the technical modeling procedures, and only a few studies have sought to improve our understanding of the nonlinear relationships that underlie LULC change. Many CA models lack the ability to simulate the detailed patch evolution of multiple land use types. This study introduces a patch-generating land use simulation (PLUS) model that integrates a land expansion analysis strategy and a CA model based on multi-type random patch seeds. These were used to understand the drivers of land expansion and to investigate the landscape dynamics in Wuhan, China. The proposed model achieved a higher simulation accuracy and more similar landscape pattern metrics to the true landscape than other CA models tested. The land expansion analysis strategy also uncovered some underlying transition rules, such as that grassland is most likely to be found where it is not strongly impacted by human activities, and that deciduous forest areas tend to grow adjacent to arterial roads. We also projected the structure of land use under different optimizing scenarios for 2035 by combining the proposed model with multi-objective programming. The results indicate that the proposed model can help policymakers to manage future land use dynamics and so to realize more sustainable land use patterns for future development. Software for PLUS has been made available at https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beyondjun完成签到,获得积分10
刚刚
门板完成签到,获得积分10
1秒前
Lucifer发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Lee完成签到,获得积分10
2秒前
小马甲应助喂鱼鱼采纳,获得10
3秒前
4秒前
JamesPei应助明亮的冷雪采纳,获得10
4秒前
内向尔安完成签到,获得积分10
6秒前
RSRH完成签到,获得积分10
7秒前
大个应助Maestro_S采纳,获得10
7秒前
7秒前
9秒前
9秒前
xzy998应助含蓄可冥采纳,获得10
10秒前
小蘑菇应助斯文的傲珊采纳,获得10
10秒前
10秒前
Orange应助开朗的哈密瓜采纳,获得10
11秒前
老王发布了新的文献求助10
12秒前
小花完成签到 ,获得积分10
12秒前
14秒前
喂鱼鱼发布了新的文献求助10
14秒前
16秒前
小蘑菇应助核动力驴采纳,获得10
17秒前
jiojio完成签到,获得积分10
19秒前
塑料做的蜻蜓完成签到,获得积分10
19秒前
19秒前
科研通AI6应助踏实迎南采纳,获得30
20秒前
美好冰蓝发布了新的文献求助10
20秒前
22秒前
23秒前
yanghaobo完成签到,获得积分10
23秒前
23秒前
传奇3应助玖依采纳,获得100
24秒前
XDS发布了新的文献求助10
24秒前
25秒前
25秒前
神秘猎牛人应助喂鱼鱼采纳,获得10
26秒前
lixiangrui110发布了新的文献求助10
29秒前
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4231837
求助须知:如何正确求助?哪些是违规求助? 3765105
关于积分的说明 11830613
捐赠科研通 3424081
什么是DOI,文献DOI怎么找? 1879039
邀请新用户注册赠送积分活动 931933
科研通“疑难数据库(出版商)”最低求助积分说明 839431