A Review on Machine Learning for EEG Signal Processing in Bioengineering

支持向量机 脑电图 决策树 计算机科学 朴素贝叶斯分类器 随机森林 无监督学习 监督学习 人工智能 模式识别(心理学) 人工神经网络 机器学习 心理学 精神科
作者
Mohammad-Parsa Hosseini,Amin Hosseini,Kiarash Ahi
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:14: 204-218 被引量:284
标识
DOI:10.1109/rbme.2020.2969915
摘要

Electroencephalography (EEG) has been a staple method for identifying certain health conditions in patients since its discovery. Due to the many different types of classifiers available to use, the analysis methods are also equally numerous. In this review, we will be examining specifically machine learning methods that have been developed for EEG analysis with bioengineering applications. We reviewed literature from 1988 to 2018 to capture previous and current classification methods for EEG in multiple applications. From this information, we are able to determine the overall effectiveness of each machine learning method as well as the key characteristics. We have found that all the primary methods used in machine learning have been applied in some form in EEG classification. This ranges from Naive-Bayes to Decision Tree/Random Forest, to Support Vector Machine (SVM). Supervised learning methods are on average of higher accuracy than their unsupervised counterparts. This includes SVM and KNN. While each of the methods individually is limited in their accuracy in their respective applications, there is hope that the combination of methods when implemented properly has a higher overall classification accuracy. This paper provides a comprehensive overview of Machine Learning applications used in EEG analysis. It also gives an overview of each of the methods and general applications that each is best suited to.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
若影完成签到,获得积分10
6秒前
蘇q完成签到 ,获得积分10
7秒前
14秒前
含蓄翠安完成签到,获得积分10
15秒前
科研通AI5应助潇洒小松鼠采纳,获得10
16秒前
17秒前
light完成签到 ,获得积分10
17秒前
mljever完成签到,获得积分10
17秒前
爱到凌尘&完成签到,获得积分20
18秒前
满意项链发布了新的文献求助10
19秒前
黑白发布了新的文献求助20
19秒前
19秒前
生尽证提发布了新的文献求助10
23秒前
霍师傅发布了新的文献求助10
24秒前
科研通AI5应助内向的宛丝采纳,获得10
38秒前
亭亭如盖完成签到,获得积分10
41秒前
bkagyin应助科研通管家采纳,获得10
42秒前
niu应助科研通管家采纳,获得10
42秒前
42秒前
搜集达人应助科研通管家采纳,获得10
42秒前
丘比特应助科研通管家采纳,获得10
42秒前
42秒前
niu应助科研通管家采纳,获得10
43秒前
香蕉觅云应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
JamesPei应助科研通管家采纳,获得10
43秒前
勤恳立轩应助科研通管家采纳,获得10
43秒前
grs完成签到 ,获得积分10
47秒前
50秒前
不知道完成签到,获得积分10
51秒前
55秒前
56秒前
56秒前
桃子发布了新的文献求助10
1分钟前
1分钟前
必发Nature发布了新的文献求助10
1分钟前
风华正茂完成签到,获得积分20
1分钟前
箱子发布了新的文献求助10
1分钟前
OuO完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315