Deep Learning of Spatiotemporal Filtering for Fast Super-Resolution Ultrasound Imaging

深度学习 卷积神经网络 人工智能 计算机科学 背景(考古学) 杂乱 可视化 基本事实 成像体模 滤波器(信号处理) 人工神经网络 数据集 模式识别(心理学) 计算机视觉 光学 物理 电信 生物 古生物学 雷达
作者
Katherine Brown,Debabrata Ghosh,Kenneth Hoyt
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:67 (9): 1820-1829 被引量:56
标识
DOI:10.1109/tuffc.2020.2988164
摘要

Super-resolution ultrasound (SR-US) imaging is a new technique that breaks the diffraction limit and allows visualization of microvascular structures down to tens of micrometers. The image processing methods for the spatiotemporal filtering needed in SR-US, such as singular value decomposition (SVD), are computationally burdensome and performed offline. Deep learning has been applied to many biomedical imaging problems, and trained neural networks have been shown to process an image in milliseconds. The goal of this study was to evaluate the effectiveness of deep learning to realize a spatiotemporal filter in the context of SR-US processing. A 3-D convolutional neural network (3DCNN) was trained on in vitro and in vivo data sets using SVD as ground truth in tissue clutter reduction. In vitro data were obtained from a tissue-mimicking flow phantom, and in vivo data were collected from murine tumors of breast cancer. Three training techniques were studied: training with in vitro data sets, training with in vivo data sets, and transfer learning with initial training on in vitro data sets followed by fine-tuning with in vivo data sets. The neural network trained with in vitro data sets followed by fine-tuning with in vivo data sets had the highest accuracy at 88.0%. The SR-US images produced with deep learning allowed visualization of vessels as small as 25 μm in diameter, which is below the diffraction limit (wavelength of 110 μm at 14 MHz). The performance of the 3DCNN was encouraging for real-time SR-US imaging with an average processing frame rate for in vivo data of 51 Hz with GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx完成签到 ,获得积分10
1秒前
Vesper完成签到 ,获得积分10
2秒前
皇甫瑾瑜发布了新的文献求助10
3秒前
研友_VZG7GZ应助xx采纳,获得10
6秒前
英姑应助Wang采纳,获得10
6秒前
皇甫瑾瑜完成签到,获得积分10
10秒前
11秒前
lighting完成签到 ,获得积分10
15秒前
御风完成签到,获得积分10
15秒前
Yes0419完成签到,获得积分10
15秒前
温馨完成签到 ,获得积分10
17秒前
祁尒发布了新的文献求助10
18秒前
19秒前
kyt完成签到,获得积分10
23秒前
btcat完成签到,获得积分10
24秒前
叶子完成签到 ,获得积分10
24秒前
25秒前
小桂园完成签到,获得积分10
25秒前
酷酷小子完成签到 ,获得积分10
26秒前
27秒前
i2stay完成签到,获得积分10
28秒前
犹豫代曼完成签到,获得积分10
33秒前
Yanzhi完成签到,获得积分10
35秒前
Jason发布了新的文献求助10
37秒前
nicolaslcq完成签到,获得积分10
39秒前
41秒前
Alone离殇完成签到 ,获得积分10
45秒前
Iwan发布了新的文献求助10
45秒前
47秒前
林夕完成签到 ,获得积分10
49秒前
51秒前
zxy完成签到 ,获得积分10
52秒前
eternal_dreams完成签到 ,获得积分10
53秒前
宝玉完成签到 ,获得积分10
54秒前
Tate完成签到 ,获得积分10
1分钟前
Hollen发布了新的文献求助30
1分钟前
科研孙完成签到,获得积分10
1分钟前
木木杉完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379705
关于积分的说明 10510152
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615