A Genotype Signature for Predicting Pathologic Complete Response in Locally Advanced Rectal Cancer

医学 结直肠癌 肿瘤科 内科学 阶段(地层学) 外显子组测序 队列 接收机工作特性 癌胚抗原 基因型 外显子组 癌症 突变 基因 古生物学 生物 生物化学
作者
Weiwei Xiao,Min Li,Zhiwei Guo,Rong Zhang,Shaoyan Xi,Xiang-Guo Zhang,Yong Li,Deqing Wu,Yufeng Ren,Xiaolin Pang,Xiang‐Bo Wan,Kun Li,Chunlian Zhou,Xiangming Zhai,Zhikun Liang,Qiaoxuan Wang,Zhifan Zeng,Huizhong Zhang,Xuexi Yang,Ying-Song Wu
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:110 (2): 482-491 被引量:15
标识
DOI:10.1016/j.ijrobp.2021.01.005
摘要

Purpose To construct and validate a predicting genotype signature for pathologic complete response (pCR) in locally advanced rectal cancer (PGS-LARC) after neoadjuvant chemoradiation. Methods and Materials Whole exome sequencing was performed in 15 LARC tissues. Mutation sites were selected according to the whole exome sequencing data and literature. Target sequencing was performed in a training cohort (n = 202) to build the PGS-LARC model using regression analysis, and internal (n = 76) and external validation cohorts (n = 69) were used for validating the results. Predictive performance of the PGS-LARC model was compared with clinical factors and between subgroups. The PGS-LARC model comprised 15 genes. Results The area under the curve (AUC) of the PGS model in the training, internal, and external validation cohorts was 0.776 (0.697-0.849), 0.760 (0.644-0.867), and 0.812 (0.690-0.915), respectively, and demonstrated higher AUC, accuracy, sensitivity, and specificity than cT stage, cN stage, carcinoembryonic antigen level, and CA19-9 level for pCR prediction. The predictive performance of the model was superior to clinical factors in all subgroups. For patients with clinical complete response (cCR), the positive prediction value was 94.7%. Conclusions The PGS-LARC is a reliable predictive tool for pCR in patients with LARC and might be helpful to enable nonoperative management strategy in those patients who refuse surgery. It has the potential to guide treatment decisions for patients with different probability of tumor regression after neoadjuvant therapy, especially when combining cCR criteria and PGS-LARC. To construct and validate a predicting genotype signature for pathologic complete response (pCR) in locally advanced rectal cancer (PGS-LARC) after neoadjuvant chemoradiation. Whole exome sequencing was performed in 15 LARC tissues. Mutation sites were selected according to the whole exome sequencing data and literature. Target sequencing was performed in a training cohort (n = 202) to build the PGS-LARC model using regression analysis, and internal (n = 76) and external validation cohorts (n = 69) were used for validating the results. Predictive performance of the PGS-LARC model was compared with clinical factors and between subgroups. The PGS-LARC model comprised 15 genes. The area under the curve (AUC) of the PGS model in the training, internal, and external validation cohorts was 0.776 (0.697-0.849), 0.760 (0.644-0.867), and 0.812 (0.690-0.915), respectively, and demonstrated higher AUC, accuracy, sensitivity, and specificity than cT stage, cN stage, carcinoembryonic antigen level, and CA19-9 level for pCR prediction. The predictive performance of the model was superior to clinical factors in all subgroups. For patients with clinical complete response (cCR), the positive prediction value was 94.7%. The PGS-LARC is a reliable predictive tool for pCR in patients with LARC and might be helpful to enable nonoperative management strategy in those patients who refuse surgery. It has the potential to guide treatment decisions for patients with different probability of tumor regression after neoadjuvant therapy, especially when combining cCR criteria and PGS-LARC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勍峙完成签到,获得积分10
1秒前
充电宝应助sh131采纳,获得10
2秒前
老妖怪发布了新的文献求助10
2秒前
青鱼完成签到,获得积分10
2秒前
CodeCraft应助Micah采纳,获得10
4秒前
HZQ应助liangliang采纳,获得30
7秒前
7秒前
咖啡茶叶豆完成签到,获得积分10
9秒前
tsjxs完成签到,获得积分10
9秒前
积极亦竹完成签到,获得积分10
9秒前
老妖怪发布了新的文献求助10
13秒前
13秒前
小蘑菇应助舒适访彤采纳,获得10
16秒前
16秒前
17秒前
积极亦竹发布了新的文献求助10
18秒前
六六完成签到,获得积分10
19秒前
20秒前
20秒前
所所应助晴qq采纳,获得10
21秒前
22秒前
22秒前
24秒前
tuanheqi应助涛声依旧98采纳,获得150
25秒前
天水完成签到,获得积分10
25秒前
老实莫言发布了新的文献求助10
25秒前
oooo发布了新的文献求助10
25秒前
yikiann发布了新的文献求助10
27秒前
老妖怪发布了新的文献求助10
28秒前
小1发布了新的文献求助10
28秒前
wn完成签到,获得积分20
28秒前
无花果应助科研通管家采纳,获得10
29秒前
佈八应助科研通管家采纳,获得10
29秒前
自信的孱应助科研通管家采纳,获得10
29秒前
在水一方应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
自信的孱应助科研通管家采纳,获得10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169850
求助须知:如何正确求助?哪些是违规求助? 3705275
关于积分的说明 11692601
捐赠科研通 3391841
什么是DOI,文献DOI怎么找? 1860200
邀请新用户注册赠送积分活动 920278
科研通“疑难数据库(出版商)”最低求助积分说明 832649