Category-specific Semantic Coherency Learning for Fine-grained Image Recognition

判别式 计算机科学 人工智能 特征(语言学) 图形 语义学(计算机科学) 概率潜在语义分析 模式识别(心理学) 集合(抽象数据类型) 理论计算机科学 语言学 哲学 程序设计语言
作者
Shijie Wang,Zhihui Wang,Haojie Li,Wanli Ouyang
标识
DOI:10.1145/3394171.3413871
摘要

Existing deep learning based weakly supervised fine-grained image recognition (WFGIR) methods usually pick out the discriminative regions from the high-level feature (HLF) maps directly. However, as HLF maps are derived based on spatial aggregation of convolution which is basically a pattern matching process that applies fixed filters, it is ineffective to model visual contents of same semantic but varying posture or perspective. We argue that this will cause the selected discriminative regions of same sub-category are not semantically corresponding and thus degrade the WFGIR performance. To address this issue, we propose an end-to-end Category-specific Semantic Coherency Network (CSC-Net) to semantically align the discriminative regions of the same subcategory. Specifically, CSC-Net consists of: 1) Local-to-Attribute Projecting Module (LPM), which automatically learns a set of latent attributes via collecting the category-specific semantic details while eliminating the varying spatial distributions from the local regions. 2) Latent Attribute Aligning (LAA), which aligns the latent attributes to specific semantic via graph convolution based on their discriminability, to achieve category-specific semantic coherency; 3) Attribute-to-Local Resuming Module (ARM), which resumes the original Euclidean space of latent attributes and construct latent attribute aligned feature maps by a location-embedding graph unpooling operation. Finally, the new feature maps are used which applies the category-specific semantic coherency implicitly for more accurate discriminative regions localization. Extensive experiments verify that CSC-Net yields the best performance under the same settings with most competitive approaches, on CUB Bird, Stanford-Cars, and FGVC Aircraft datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助荧123456采纳,获得10
1秒前
June发布了新的文献求助10
4秒前
qq发布了新的文献求助10
5秒前
blue发布了新的文献求助10
5秒前
虫子完成签到,获得积分10
6秒前
9秒前
tzj关闭了tzj文献求助
10秒前
FashionBoy应助科研助手6采纳,获得10
13秒前
梦茵发布了新的文献求助10
15秒前
16秒前
Ricardo完成签到,获得积分10
16秒前
cloud发布了新的文献求助10
17秒前
十一发布了新的文献求助20
17秒前
lwz2688完成签到,获得积分10
19秒前
hbc关闭了hbc文献求助
20秒前
qq完成签到,获得积分10
21秒前
张家辉是卧底完成签到,获得积分10
22秒前
23秒前
24秒前
yydragen应助李伍各采纳,获得20
24秒前
25秒前
25秒前
27秒前
yydragen应助南风采纳,获得20
27秒前
无花果应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
彭于晏应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
酷波er应助科研通管家采纳,获得10
28秒前
今后应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
28秒前
wanci应助郭博采纳,获得10
28秒前
29秒前
kingwill应助刘雯采纳,获得20
29秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839783
求助须知:如何正确求助?哪些是违规求助? 3382100
关于积分的说明 10521272
捐赠科研通 3101484
什么是DOI,文献DOI怎么找? 1708111
邀请新用户注册赠送积分活动 822179
科研通“疑难数据库(出版商)”最低求助积分说明 773208