R-LOAM: Improving LiDAR Odometry and Mapping With Point-to-Mesh Features of a Known 3D Reference Object

点云 视觉里程计 地标
作者
Martin Oelsch,Mojtaba Karimi,Eckehard Steinbach
出处
期刊:IEEE robotics & automation letters [Institute of Electrical and Electronics Engineers]
卷期号:6 (2): 2068-2075 被引量:2
标识
DOI:10.1109/lra.2021.3060413
摘要

LiDAR-based odometry and mapping is used in many robotic applications to retrieve the robot's position in an unknown environment and allows for autonomous operation in GPS-denied (e.g., indoor) environments. With a 3D LiDAR sensor, highly accurate localization becomes possible, which enables high quality 3D reconstruction of the environment. In this letter we extend the well-known LOAM framework by leveraging prior knowledge about a reference object in the environment to further improve the localization accuracy. This requires a known 3D model of the reference object and its known position in a global coordinate frame. Instead of only relying on the point features in the mapping module of LOAM, we also include mesh features extracted from the 3D triangular mesh of the reference object in the optimization problem. For fast correspondence computation of mesh features, we use the Axis-Aligned-Bounding-Box-Tree (AABB) structure. Essentially, our approach not only makes use of the previously built map for absolute localization in the environment, but also takes the relative position to the reference object into account, effectively reducing long-term drift. To validate the proposed concept, we generated datasets using the Gazebo simulation environment in exemplary visual inspection scenarios of an airplane inside a hangar and the Eiffel Tower. An actuated 3D LiDAR sensor is mounted via a 1-DoF gimbal on a UAV capturing 360 $^\circ$ scans. We benchmark our approach against the state-of-the-art open-source LOAM framework. The results show that the proposed joint optimization using both point and mesh features yields a significant reduction in Absolute Pose Error (APE) and therefore improves the map and 3D reconstruction quality during long-term operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
缥缈青烟完成签到,获得积分10
1秒前
赵心宇完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
星辰大海应助智智采纳,获得10
6秒前
6秒前
6秒前
共享精神应助沈急急急采纳,获得30
7秒前
小徐完成签到,获得积分10
7秒前
清新的焦发布了新的文献求助10
7秒前
whfszg1445发布了新的文献求助10
8秒前
8秒前
9秒前
明理的访风完成签到,获得积分10
9秒前
10秒前
英姑应助123123采纳,获得10
11秒前
艾桑发布了新的文献求助10
13秒前
梦C2发布了新的文献求助10
13秒前
开朗寇发布了新的文献求助10
14秒前
追光发布了新的文献求助10
14秒前
duran完成签到,获得积分10
15秒前
kk完成签到,获得积分10
16秒前
Akim应助月亮采纳,获得10
17秒前
20秒前
顺顺完成签到,获得积分10
20秒前
斯文败类应助布丁采纳,获得10
21秒前
22秒前
艾桑完成签到,获得积分10
22秒前
鲲kun完成签到,获得积分20
23秒前
23秒前
一一应助Shylie采纳,获得10
23秒前
博士后完成签到 ,获得积分10
24秒前
之_ZH完成签到 ,获得积分10
25秒前
椿人发布了新的文献求助10
25秒前
Ava应助追光采纳,获得10
26秒前
强小强努力努力完成签到 ,获得积分10
27秒前
月亮发布了新的文献求助10
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering 200
How We Sold Our Future: The Failure to Fight Climate Change 200
Lab Dog: What Global Science Owes American Beagles 200
Governing Marine Living Resources in the Polar Regions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824579
求助须知:如何正确求助?哪些是违规求助? 3366885
关于积分的说明 10443234
捐赠科研通 3086193
什么是DOI,文献DOI怎么找? 1697776
邀请新用户注册赠送积分活动 816513
科研通“疑难数据库(出版商)”最低求助积分说明 769742