Discovering a set of policies for the worst case reward

集合(抽象数据类型) 计算机科学 强化学习 任务(项目管理) 班级(哲学) 功能(生物学) 网格 构造(python库) 订单(交换) 光学(聚焦) 单调函数 人工智能 数学 数学分析 物理 几何学 管理 财务 进化生物学 光学 经济 生物 程序设计语言
作者
Tom Zahavy,Andre Noll Barreto,Daniel J. Mankowitz,Shaobo Hou,Brendan O'Donoghue,Iurii Kemaev,Satinder Singh
出处
期刊:Cornell University - arXiv 被引量:3
摘要

We study the problem of how to construct a set of policies that can be composed together to solve a collection of reinforcement learning tasks. Each task is a different reward function defined as a linear combination of known features. We consider a specific class of policy compositions which we call set improving policies (SIPs): given a set of policies and a set of tasks, a SIP is any composition of the former whose performance is at least as good as that of its constituents across all the tasks. We focus on the most conservative instantiation of SIPs, set-max policies (SMPs), so our analysis extends to any SIP. This includes known policy-composition operators like generalized policy improvement. Our main contribution is an algorithm that builds a set of policies in order to maximize the worst-case performance of the resulting SMP on the set of tasks. The algorithm works by successively adding new policies to the set. We show that the worst-case performance of the resulting SMP strictly improves at each iteration, and the algorithm only stops when there does not exist a policy that leads to improved performance. We empirically evaluate our algorithm on a grid world and also on a set of domains from the DeepMind control suite. We confirm our theoretical results regarding the monotonically improving performance of our algorithm. Interestingly, we also show empirically that the sets of policies computed by the algorithm are diverse, leading to different trajectories in the grid world and very distinct locomotion skills in the control suite.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助BJH0314采纳,获得10
1秒前
1秒前
搜集达人应助sdsd采纳,获得10
1秒前
plh完成签到,获得积分10
1秒前
1秒前
1秒前
macarthur完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
勤劳寡妇完成签到 ,获得积分10
3秒前
3秒前
4秒前
凡事发生必有利于我完成签到,获得积分10
4秒前
四夕水窖发布了新的文献求助10
4秒前
6秒前
wyh发布了新的文献求助10
6秒前
7秒前
青阳发布了新的文献求助10
7秒前
支剑心发布了新的文献求助10
7秒前
lxz发布了新的文献求助10
8秒前
whuhustwit发布了新的文献求助10
8秒前
王富贵发布了新的文献求助10
9秒前
10秒前
10秒前
杨鑫萍完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Purple发布了新的文献求助10
12秒前
sdsd完成签到,获得积分10
12秒前
12秒前
青鸟归发布了新的文献求助10
14秒前
阿妤完成签到 ,获得积分10
15秒前
Mandarin023完成签到,获得积分10
15秒前
totoo2021应助lwydxb12138采纳,获得30
15秒前
石人发布了新的文献求助200
15秒前
灿灿发布了新的文献求助10
16秒前
17秒前
桐桐应助四夕水窖采纳,获得10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5797488
求助须知:如何正确求助?哪些是违规求助? 5784526
关于积分的说明 15494878
捐赠科研通 4924332
什么是DOI,文献DOI怎么找? 2650809
邀请新用户注册赠送积分活动 1598024
关于科研通互助平台的介绍 1552774