材料科学
阳极
硅
石墨
碳纤维
合金
锂(药物)
锂离子电池的纳米结构
纳米颗粒
离子
粒子(生态学)
纳米技术
化学工程
复合材料
冶金
电极
复合数
有机化学
内分泌学
物理化学
工程类
化学
地质学
海洋学
医学
作者
Chuanhai Gan,Chengkun Zhang,Weidong Wen,Yingkuan Liu,Juan Chen,Qingshui Xie,Xuetao Luo
标识
DOI:10.1021/acsami.9b13750
摘要
Silicon nanoparticles (SiNPs) with a median size of 51 nm are prepared by the sand mill from waste silicon, and then carbon-interweaved SiNPs/graphite anode materials are designed. Because of the size of SiNPs is restricted below a critical fracture size of 150 nm as well as the rational decoration of carbon and graphite, fracture of SiNPs, and volume deformation of active materials are highly alleviated, leading to low impedance, enhanced electrochemical reaction kinetics, and good electronic connection between active materials and current collector. Furthermore, delithiation reversibility of the formed crystalline Li15Si4 alloy is enhanced. As a result, the anode with 10.5 wt % content of Si (including SiOx) delivers a properly high initial reversible capacity of 505 mA h g-1, high cycling stability with capacity retentions of 86.3%, and 91.5% at 0.1 and 1 A g-1 after 500 cycles, respectively. After cycling at a series of higher current densities, the reversible capacity recovers to the original level completely (100% recovery) when the current density is set back to the original value, exhibiting outstanding rate performance. The results indicate that the silicon-carbon anode can achieve high cycling performances with enhanced delithiation reversibility of the formed crystalline Li15Si4 alloy by restricting size of SiNPs and decoration of carbon materials, which are discussed systematically. The SiNPs are recycled from waste Si, and synthetic strategy of anode materials is very facile, cost-effective, and nontoxic, which has potential for industrial production.
科研通智能强力驱动
Strongly Powered by AbleSci AI