Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery

健康状况 汽车蓄电池 荷电状态 锂(药物) 热失控 铅酸蓄电池 电池组 磷酸铁锂 储能 泄流深度
作者
Abhishek Sarkar,Pranav Shrotriya,Abhijit Chandra,Chao Hu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:25: 100911-100911 被引量:14
标识
DOI:10.1016/j.est.2019.100911
摘要

Degradation due to capacity fade is a major cause of concern involved in the design and implementation of lithium-ion battery. In particular, the formation and growth of Solid Electrolyte Interface (SEI) have been considered as one of the primary degradation mechanisms affecting the cycle life of the battery. Over the past decade, several models have been reported towards simulation of SEI growth-induced degradation and prediction of cycle life. In this work, an efficient reduced-order electrochemical model was developed for a lithium cobalt oxide/graphite battery. A reaction–diffusion based SEI model was integrated with the electrochemical model to predict the cyclic capacity loss due to electrolyte deposition on the anode. The algorithm developed for this battery module was designed to reduce the computational time for capacity fade calculation with any (dis)charging protocol. The model was also applied for a lithium ferrous phosphate/graphite cell and in both cases, the fade predictions were within ±1% deviation from the experimental results. A comparison of two charging protocols was undertaken to identify approaches that improve capacity fade characteristics of battery. The electrochemical benefit of a reduced fading rate for aged (or used) lithium battery was investigated. A concept of “aged-battery” was proposed to be used as an advantage for better cycle-life in battery for biomedical devices and recycling of electric vehicle battery for solar panels applications. An economic analysis was performed to justify the benefits from lower fade that was weighed against the additional cost involved in aging the battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助yaoyao采纳,获得10
2秒前
尽舜尧发布了新的文献求助10
2秒前
英勇的麦片完成签到,获得积分10
3秒前
hahaha发布了新的文献求助10
3秒前
4秒前
CodeCraft应助李Xinyao_29采纳,获得10
4秒前
reading gene完成签到,获得积分10
4秒前
schuang完成签到,获得积分10
4秒前
5秒前
buzhinianjiu完成签到,获得积分10
5秒前
天天快乐应助漂亮凌旋采纳,获得10
6秒前
大胆剑封完成签到,获得积分10
7秒前
咸鱼完成签到,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
HZQ应助科研通管家采纳,获得30
9秒前
wanci应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
核桃应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Orange应助科研通管家采纳,获得10
10秒前
小新发布了新的文献求助10
10秒前
Lucas应助丫头采纳,获得10
11秒前
12秒前
酷波er应助吴英俊采纳,获得10
12秒前
Zhang完成签到,获得积分10
13秒前
13秒前
蓝蓝的天空完成签到 ,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
探索化学的奥秘:电子结构方法 400
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171754
求助须知:如何正确求助?哪些是违规求助? 3707290
关于积分的说明 11696526
捐赠科研通 3392569
什么是DOI,文献DOI怎么找? 1860937
邀请新用户注册赠送积分活动 920610
科研通“疑难数据库(出版商)”最低求助积分说明 832768