VehicleNet: Learning Robust Visual Representation for Vehicle Re-Identification

计算机科学 鉴定(生物学) 人工智能 代表(政治) 可视化 计算机视觉 模式识别(心理学) 机器学习 政治学 植物 生物 政治 法学
作者
Zhedong Zheng,Tao Ruan,Yunchao Wei,Yi Yang,Tao Mei
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 2683-2693 被引量:151
标识
DOI:10.1109/tmm.2020.3014488
摘要

One fundamental challenge of vehicle re-identification (re-id) is to learn robust and discriminative visual representation, given the significant intra-class vehicle variations across different camera views. As the existing vehicle datasets are limited in terms of training images and viewpoints, we propose to build a unique large-scale vehicle dataset (called VehicleNet) by harnessing four public vehicle datasets, and design a simple yet effective two-stage progressive approach to learning more robust visual representation from VehicleNet. The first stage of our approach is to learn the generic representation for all domains (i.e., source vehicle datasets) by training with the conventional classification loss. This stage relaxes the full alignment between the training and testing domains, as it is agnostic to the target vehicle domain. The second stage is to fine-tune the trained model purely based on the target vehicle set, by minimizing the distribution discrepancy between our VehicleNet and any target domain. We discuss our proposed multi-source dataset VehicleNet and evaluate the effectiveness of the two-stage progressive representation learning through extensive experiments. We achieve the state-of-art accuracy of $\text{86.07}\%$ mAP on the private test set of AICity Challenge, and competitive results on two other public vehicle re-id datasets, i.e., VeRi-776 and VehicleID. We hope this new VehicleNet dataset and the learned robust representations can pave the way for vehicle re-id in the real-world environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助150
1秒前
1秒前
2秒前
gdh发布了新的文献求助10
2秒前
NexusExplorer应助smile采纳,获得10
2秒前
2秒前
三三四发布了新的文献求助10
4秒前
FashionBoy应助从容安珊采纳,获得10
4秒前
梁晓玲发布了新的文献求助10
4秒前
王泽坤完成签到 ,获得积分10
4秒前
4秒前
科研通AI5应助小遇采纳,获得10
4秒前
5秒前
绝对草草完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
涯欤应助才下眉头采纳,获得20
8秒前
火猫三丈发布了新的文献求助10
8秒前
8秒前
9秒前
星辰大海应助精英刺客采纳,获得10
9秒前
11秒前
tangying8642发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助150
11秒前
WSY发布了新的文献求助10
12秒前
CC发布了新的文献求助150
12秒前
12秒前
张颖涛完成签到,获得积分10
12秒前
彦君发布了新的文献求助10
12秒前
金贝贝完成签到,获得积分10
12秒前
12秒前
13秒前
彭于晏应助陈嘟嘟采纳,获得10
13秒前
14秒前
14秒前
Roy发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
gyhmm发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4664193
求助须知:如何正确求助?哪些是违规求助? 4045670
关于积分的说明 12513987
捐赠科研通 3738198
什么是DOI,文献DOI怎么找? 2064446
邀请新用户注册赠送积分活动 1094017
科研通“疑难数据库(出版商)”最低求助积分说明 974564