Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

医学 肺癌 深度学习 置信区间 卷积神经网络 无线电技术 医学影像学 阶段(地层学) 癌症 内科学 放射科 肿瘤科 人工智能 计算机科学 生物 古生物学
作者
Yiwen Xu,Ahmed Hosny,Roman Zeleznik,Chintan Parmar,Thibaud Coroller,Idalid Franco,Raymond H. Mak,Hugo J.W.L. Aerts
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:25 (11): 3266-3275 被引量:448
标识
DOI:10.1158/1078-0432.ccr-18-2495
摘要

Abstract Purpose: Tumors are continuously evolving biological systems, and medical imaging is uniquely positioned to monitor changes throughout treatment. Although qualitatively tracking lesions over space and time may be trivial, the development of clinically relevant, automated radiomics methods that incorporate serial imaging data is far more challenging. In this study, we evaluated deep learning networks for predicting clinical outcomes through analyzing time series CT images of patients with locally advanced non–small cell lung cancer (NSCLC). Experimental Design: Dataset A consists of 179 patients with stage III NSCLC treated with definitive chemoradiation, with pretreatment and posttreatment CT images at 1, 3, and 6 months follow-up (581 scans). Models were developed using transfer learning of convolutional neural networks (CNN) with recurrent neural networks (RNN), using single seed-point tumor localization. Pathologic response validation was performed on dataset B, comprising 89 patients with NSCLC treated with chemoradiation and surgery (178 scans). Results: Deep learning models using time series scans were significantly predictive of survival and cancer-specific outcomes (progression, distant metastases, and local-regional recurrence). Model performance was enhanced with each additional follow-up scan into the CNN model (e.g., 2-year overall survival: AUC = 0.74, P < 0.05). The models stratified patients into low and high mortality risk groups, which were significantly associated with overall survival [HR = 6.16; 95% confidence interval (CI), 2.17–17.44; P < 0.001]. The model also significantly predicted pathologic response in dataset B (P = 0.016). Conclusions: We demonstrate that deep learning can integrate imaging scans at multiple timepoints to improve clinical outcome predictions. AI-based noninvasive radiomics biomarkers can have a significant impact in the clinic given their low cost and minimal requirements for human input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu156完成签到,获得积分10
刚刚
蘓蘇发布了新的文献求助30
2秒前
石头完成签到,获得积分10
4秒前
稳重乌冬面完成签到 ,获得积分10
6秒前
lixixi完成签到 ,获得积分10
7秒前
9秒前
10秒前
芝士发布了新的文献求助10
11秒前
雪落你看不见完成签到,获得积分10
11秒前
天明完成签到,获得积分10
12秒前
八九完成签到 ,获得积分10
14秒前
LCFXR发布了新的文献求助10
15秒前
16秒前
FashionBoy应助JasonSun采纳,获得10
18秒前
科研通AI2S应助LCFXR采纳,获得10
21秒前
LWFFFF完成签到,获得积分10
23秒前
iShine发布了新的文献求助200
24秒前
醉熏的红酒完成签到,获得积分10
25秒前
27秒前
七面东风完成签到,获得积分10
27秒前
情怀应助橙橙采纳,获得10
27秒前
27秒前
shiyin完成签到 ,获得积分10
27秒前
28秒前
大喜发布了新的文献求助30
32秒前
瘦瘦怀亦完成签到,获得积分10
32秒前
33秒前
嘟噜发布了新的文献求助10
33秒前
34秒前
流年完成签到 ,获得积分10
35秒前
别闹完成签到 ,获得积分10
36秒前
迅速灵寒完成签到,获得积分10
36秒前
万能图书馆应助王佳悦采纳,获得10
37秒前
丘比特应助eddy采纳,获得10
38秒前
hzymed发布了新的文献求助10
38秒前
哈哈怪完成签到 ,获得积分10
38秒前
40秒前
正直的擎宇完成签到,获得积分10
41秒前
晨曦发布了新的文献求助10
42秒前
立麦完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
François Ravary SJ and a Sino-European Musical Culture in Nineteenth-Century Shanghai 500
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4796235
求助须知:如何正确求助?哪些是违规求助? 4116617
关于积分的说明 12735614
捐赠科研通 3846440
什么是DOI,文献DOI怎么找? 2119704
邀请新用户注册赠送积分活动 1141815
关于科研通互助平台的介绍 1031232