HiSpatialCluster: A novel high‐performance software tool for clustering massive spatial points

聚类分析 计算机科学 数据挖掘 CURE数据聚类算法 树冠聚类算法 相关聚类 数据流聚类 软件 共识聚类 星团(航天器) 数据库扫描 空间分析 人工智能 高维数据聚类 层次聚类 地理 遥感
作者
Yi Chen,Zhou Huang,Tao Pei,Yu Liu
出处
期刊:Transactions in Gis [Wiley]
卷期号:22 (5): 1275-1298 被引量:10
标识
DOI:10.1111/tgis.12463
摘要

In the era of big data, spatial clustering is a very important means for geo-data analysis. When clustering big geo-data such as social media check-in data, geotagged photos, and taxi trajectory points, traditional spatial clustering algorithms are facing more challenges. On the one hand, existing spatial clustering tools cannot support the clustering of massive point sets; on the other hand, there is no perfect solution for self-adaptive spatial clustering. In order to achieve clustering of millions or even billions of points adaptively, a new spatial clustering tool—HiSpatialCluster—was proposed, in which the CFSFDP (clustering by fast search and finding density peaks) idea to find cluster centers and the DBSCAN (density-based spatial clustering of applications with noise) idea of density-connect filtering for classification are introduced. The tool’s source codes and other resources have been released on Github, and experimental evaluation was performed through clustering massive taxi trajectory points and Flickr geotagged photos in Beijing, China. The spatial clustering results were compared with those through K-means and DBSCAN as well. As a spatial clustering tool, HiSpatialCluster is expected to play a fundamental role in big geo-data research. First, this tool enables clustering adaptively on massive point datasets with uneven spatial density distribution. Second, the density-connect filter method is applied to generate homogeneous analysis units from geotagged data. Third, the tool is accelerated by both parallel CPU and GPU computing so that millions or even billions of points can be clustered efficiently.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
calm完成签到,获得积分10
刚刚
聪慧的以彤完成签到,获得积分10
1秒前
nabla发布了新的文献求助10
1秒前
佑予和安发布了新的文献求助10
2秒前
好卉完成签到 ,获得积分10
2秒前
2秒前
蛋挞好吃发布了新的文献求助10
2秒前
3秒前
万能图书馆应助李慧莹采纳,获得10
4秒前
AI完成签到 ,获得积分10
4秒前
爆米花应助Desperado采纳,获得10
5秒前
林林发布了新的文献求助10
6秒前
6秒前
HH完成签到,获得积分20
7秒前
禾下乘凉完成签到,获得积分20
7秒前
MYzhang发布了新的文献求助10
7秒前
9秒前
NexusExplorer应助蓝梦一刀采纳,获得10
10秒前
11秒前
11秒前
MchemG应助guozizi采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
MchemG应助guozizi采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
jelly10应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得30
13秒前
Orange应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
jelly10应助科研通管家采纳,获得10
14秒前
jelly10应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272436
求助须知:如何正确求助?哪些是违规求助? 4429688
关于积分的说明 13789668
捐赠科研通 4308183
什么是DOI,文献DOI怎么找? 2364041
邀请新用户注册赠送积分活动 1359627
关于科研通互助平台的介绍 1322708