Predicting local failure of brain metastases after stereotactic radiosurgery with radiomics on planning MR images and dose maps

放射外科 放射治疗计划 医学 接收机工作特性 无线电技术 磁共振成像 核医学 逻辑回归 特征(语言学) 特征选择 放射科 单变量分析 单变量 放射治疗 多元分析 多元统计 人工智能 计算机科学 机器学习 内科学 哲学 语言学
作者
Hesheng Wang,Jinyu Xue,Tanxia Qu,Kenneth Bernstein,Ting Chen,David Barbee,Joshua S. Silverman,Douglas Kondziolka
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5522-5530 被引量:22
标识
DOI:10.1002/mp.15110
摘要

Abstract Purpose Stereotactic radiosurgery (SRS) has become an important modality in the treatment of brain metastases. The purpose of this study is to investigate the potential of radiomic features from planning magnetic resonance (MR) images and dose maps to predict local failure after SRS for brain metastases. Materials/Methods Twenty‐eight patients who received Gamma Knife (GK) radiosurgery for brain metastases were retrospectively reviewed in this IRB‐approved study. 179 irradiated tumors included 42 that locally failed within one‐year follow‐up. Using SRS tumor volumes, radiomic features were calculated on T1‐weighted contrast‐enhanced MR images acquired for treatment planning and planned dose maps. 125 radiomic features regarding tumor shape, dose distribution, MR intensities and textures were extracted for each tumor. Logistic regression with automatic feature selection was built to predict tumor progression from local control after SRS. Feature selection and model evaluation using receiver operating characteristic (ROC) curves were performed in a nested cross validation (CV) scheme. The associations between selected radiomic features and treatment outcomes were statistically assessed by univariate analysis. Results The logistic model with feature selection achieved ROC AUC of 0.82 ± 0.09 on 5‐fold CV, providing 83% sensitivity and 70% specificity for predicting local failure. A total of 10 radiomic features including 1 shape feature, 6 MR images and 3 dose distribution features were selected. These features were significantly associated with treatment outcomes ( p < 0.05). The model was validated on independent holdout data with an AUC of 0.78. Conclusions Radiomic features from planning MR images and dose maps provided prognostic information in SRS for brain metastases. A model built on the radiomic features shows promise for early prediction of tumor local failure after treatment, potentially aiding in personalized care for brain metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明研完成签到,获得积分10
1秒前
无极微光应助yzz采纳,获得20
1秒前
阿丕啊呸完成签到,获得积分10
1秒前
1秒前
TTT发布了新的文献求助10
4秒前
FashionBoy应助yang采纳,获得10
5秒前
5秒前
酷波er应助健壮小懒猪采纳,获得10
5秒前
5秒前
浓缩蓝鲸完成签到,获得积分10
6秒前
6秒前
肉卷子完成签到,获得积分10
6秒前
7秒前
10秒前
帅哥发布了新的文献求助10
11秒前
11秒前
田果果发布了新的文献求助10
12秒前
天份完成签到,获得积分10
12秒前
JamesPei应助齐平露采纳,获得10
14秒前
风清扬发布了新的文献求助10
15秒前
15秒前
Arain发布了新的文献求助10
16秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
顾矜应助Jemmy采纳,获得10
20秒前
我问问完成签到 ,获得积分10
20秒前
21秒前
忘我实多发布了新的文献求助10
22秒前
22秒前
撒西不理完成签到,获得积分10
23秒前
23秒前
执着千筹发布了新的文献求助10
23秒前
流萤发布了新的文献求助10
23秒前
24秒前
25秒前
Hello应助搞怪孤丝采纳,获得10
26秒前
脑洞疼应助wei采纳,获得10
26秒前
齐平露发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630382
求助须知:如何正确求助?哪些是违规求助? 4722421
关于积分的说明 14973398
捐赠科研通 4788579
什么是DOI,文献DOI怎么找? 2556999
邀请新用户注册赠送积分活动 1517960
关于科研通互助平台的介绍 1478553