Prediction Model of Anastomotic Leakage Among Esophageal Cancer Patients After Receiving an Esophagectomy: Machine Learning Approach

医学 食管切除术 逻辑回归 随机森林 弗雷明翰风险评分 决策树 食管癌 人口 内科学 外科 机器学习 癌症 疾病 计算机科学 环境卫生
作者
Ziran Zhao,Xi Cheng,Xiao Sun,Shanrui Ma,Hao Feng,Liang Zhao
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:9 (7): e27110-e27110 被引量:10
标识
DOI:10.2196/27110
摘要

Background Anastomotic leakage (AL) is one of the severe postoperative adverse events (5%-30%), and it is related to increased medical costs in cancer patients who undergo esophagectomies. Machine learning (ML) methods show good performance at predicting risk for AL. However, AL risk prediction based on ML models among the Chinese population is unavailable. Objective This study uses ML techniques to develop and validate a risk prediction model to screen patients with emerging AL risk factors. Methods Analyses were performed using medical records from 710 patients who underwent esophagectomies at the National Clinical Research Center for Cancer between January 2010 and May 2015. We randomly split (9:1) the data set into a training data set of 639 patients and a testing data set of 71 patients using a computer algorithm. We assessed multiple classification tools to create a multivariate risk prediction model. Our ML algorithms contained decision tree, random forest, naive Bayes, and logistic regression with least absolute shrinkage and selection operator. The optimal AL prediction model was selected based on model evaluation metrics. Results The final risk panel included 36 independent risk features. Of those, 10 features were significantly identified by the logistic model, including aortic calcification (OR 2.77, 95% CI 1.32-5.81), celiac trunk calcification (OR 2.79, 95% CI 1.20-6.48), forced expiratory volume 1% (OR 0.51, 95% CI 0.30-0.89); TLco (OR 0.56, 95% CI 0.27-1.18), peripheral vascular disease (OR 4.97, 95% CI 1.44-17.07), laparoscope (OR 3.92, 95% CI 1.23-12.51), postoperative length of hospital stay (OR 1.17, 95% CI 1.13-1.21), vascular permeability activity (OR 0.46, 95% CI 0.14-1.48), and fat liquefaction of incisions (OR 4.36, 95% CI 1.86-10.21). Logistic regression with least absolute shrinkage and selection operator offered the highest prediction quality with an area under the receiver operator characteristic of 72% in the training data set. The testing model also achieved similar high performance. Conclusions Our model offered a prediction of AL with high accuracy, assisting in AL prevention and treatment. A personalized ML prediction model with a purely data-driven selection of features is feasible and effective in predicting AL in patients who underwent esophagectomy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangsir完成签到,获得积分10
2秒前
Docsiwen完成签到 ,获得积分10
3秒前
非而者厚应助安详忆梅采纳,获得10
4秒前
Cys完成签到,获得积分10
5秒前
最棒哒完成签到 ,获得积分10
6秒前
7秒前
chenjun7080完成签到,获得积分10
7秒前
安详初蓝完成签到 ,获得积分10
7秒前
谭凯文完成签到 ,获得积分10
10秒前
卓卓发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
15秒前
22秒前
星辰大海应助liugm采纳,获得10
22秒前
Alan完成签到,获得积分10
27秒前
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
安雨笙应助科研通管家采纳,获得10
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
乐乐应助科研通管家采纳,获得10
28秒前
Owen应助科研通管家采纳,获得10
28秒前
赘婿应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
萧水白完成签到,获得积分10
28秒前
可爱的函函应助sinafre采纳,获得10
29秒前
系统提示完成签到,获得积分10
29秒前
jianglili完成签到,获得积分10
30秒前
香蕉书竹完成签到,获得积分10
32秒前
吃的完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
39秒前
zhaoyan发布了新的文献求助10
43秒前
MADAO完成签到 ,获得积分10
44秒前
hay完成签到,获得积分10
45秒前
阿曾完成签到 ,获得积分10
46秒前
大模型应助zhaoyan采纳,获得10
49秒前
小李子发布了新的文献求助10
49秒前
今天开心吗完成签到 ,获得积分10
50秒前
传奇3应助shunshun采纳,获得10
51秒前
YH应助沉醉采纳,获得50
53秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864053
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649231
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990