A hybrid deep segmentation network for fundus vessels via deep-learning framework

分割 人工智能 眼底(子宫) 计算机科学 深度学习 卷积神经网络 计算机视觉 图像分割 模式识别(心理学) 尺度空间分割 医学 眼科
作者
Lei Yang,Huaixin Wang,Qingshan Zeng,Yanhong Liu,Gui‐Bin Bian
出处
期刊:Neurocomputing [Elsevier]
卷期号:448: 168-178 被引量:119
标识
DOI:10.1016/j.neucom.2021.03.085
摘要

High-precision segmentation of fundus vessels is a fundamental step in the diagnosis and treatment of fundus diseases, in which both thick and thin vessels are important features for symptom detection. With the rapid development of artificial intelligence, the deep convolutional neural network (DCNN) has been widely applied into image analysis of fundus vessels. Nevertheless, due to the imbalanced ratio between thick and thin vessels, the existing segmentation methods are weak in the task of microvessel extraction from fundus images. To address this problem, this paper proposes a new hybrid deep image segmentation method for fundus vessels that consists of a multitask segmentation network and a fusion network. For the proposed method, a multitask segmentation network is developed to precisely segment both thick vessels and thin vessels from fundus images separately. In addition, an effective loss function is designed to adapt to the two different vessel segmentation tasks and ultimately solve the imbalanced ratio between these two vessels. Furthermore, an improved U-net network model is proposed to serve as the basic segmentation network to ensure the segmentation performance of the multitask segmentation network. Together with these networks, a fusion network is also proposed to fuse these two kinds of blood vessels to obtain the fusion images as the final segmentation results of fundus vessels. The proposed segmentation method is validated on many different public data sets of fundus images, such as DRIVE, STARE and CHASE_DB1. Experimental results show that the proposed method obtains a better segmentation performance on fundus images and acquires a higher recall, F_1 value, and accuracy than other advanced segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫妮卡卡完成签到,获得积分10
刚刚
L1完成签到,获得积分10
1秒前
1秒前
yibo完成签到,获得积分10
1秒前
LiZH完成签到,获得积分10
2秒前
bona完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
无极微光应助为不争采纳,获得20
3秒前
超菜完成签到,获得积分10
3秒前
3秒前
Dimples完成签到,获得积分10
3秒前
Owen应助专注之槐采纳,获得10
4秒前
4秒前
4秒前
5秒前
LiZH发布了新的文献求助10
5秒前
云云完成签到,获得积分10
5秒前
6秒前
6秒前
青春借贷完成签到,获得积分10
6秒前
6秒前
温柔谷冬完成签到,获得积分10
6秒前
badada完成签到,获得积分10
6秒前
美好海瑶完成签到,获得积分10
7秒前
zyyyyyy完成签到,获得积分10
7秒前
爱逛动物园完成签到,获得积分10
7秒前
五虎完成签到,获得积分10
8秒前
YAN发布了新的文献求助10
8秒前
牛市棋手发布了新的文献求助10
8秒前
special完成签到 ,获得积分10
8秒前
李健应助Isaiah采纳,获得10
8秒前
Richard完成签到 ,获得积分10
8秒前
机灵石头完成签到,获得积分10
8秒前
公西钧完成签到,获得积分10
10秒前
无私的夕阳应助酷酷鱼采纳,获得10
10秒前
10秒前
无花果应助ing采纳,获得10
10秒前
Fan发布了新的文献求助10
11秒前
幼稚园扛把子完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5782048
求助须知:如何正确求助?哪些是违规求助? 5669815
关于积分的说明 15457079
捐赠科研通 4912081
什么是DOI,文献DOI怎么找? 2643957
邀请新用户注册赠送积分活动 1591642
关于科研通互助平台的介绍 1546309