Sensor Drift Compensation of E-Nose Systems With Discriminative Domain Reconstruction Based on an Extreme Learning Machine

判别式 计算机科学 极限学习机 人工智能 模式识别(心理学) 领域(数学分析) 补偿(心理学) 分歧(语言学) 机器学习 算法 人工神经网络 数学 心理学 语言学 数学分析 哲学 精神分析
作者
Zijian Wang,Yan Jia,Feiyue Chen,Xiaoyan Peng,Yuelin Zhang,Zehuan Wang,Shukai Duan
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (15): 17144-17153 被引量:28
标识
DOI:10.1109/jsen.2021.3081923
摘要

Electronic noses (E-noses) have been successfully applied in various fields. However, as a result of the inherent variability of chemical sensors, a signal processing algorithm well trained with the data from the existing domain often cannot be directly applied to the domain of interest. This severely limits the large-scale use of E-noses. In this paper, an unsupervised discriminative domain reconstruction based extreme learning machine (DDR-ELM) is proposed to compensate for such drifts/shifts and address the domain adaptation problem. Specifically, the method learns a domain-invariant space to minimize the distribution difference between different domains by discriminatively handling the different domain data using an extreme learning machine (ELM) framework. This method retains as many of the useful spatial characteristics of the source domain as possible and reduces the divergence between domains without any labeled target domain data. It avoids the cost and labor of obtaining access to the labels of data from the domain of interest. In addition, both the domain reconstruction and classification processes utilize the ELM, which is solved by pseudoinverse operations without error back-propagation iterations, consequently keeping computational complexity low. Experiments on different sensor datasets demonstrate that the proposed method is superior to several state-of-the-art drift/shift compensation methods not only in classification accuracy but also maintaining higher efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知名不具完成签到 ,获得积分10
刚刚
老迟到的小丸子完成签到,获得积分10
刚刚
1秒前
脑洞疼应助忐忑的方盒采纳,获得10
1秒前
好好休息完成签到 ,获得积分10
2秒前
XHH完成签到,获得积分10
2秒前
Executor发布了新的文献求助10
2秒前
舒心亦凝发布了新的文献求助10
2秒前
2秒前
思源应助plasma采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
浮游应助尧舜禹采纳,获得30
4秒前
5秒前
古丹娜完成签到,获得积分10
5秒前
微信研友完成签到,获得积分10
5秒前
6秒前
Koalas应助啦啦啦采纳,获得10
7秒前
浮游应助好名字采纳,获得10
7秒前
CCY发布了新的文献求助10
7秒前
wa发布了新的文献求助10
7秒前
苹果颖发布了新的文献求助10
8秒前
小蘑菇应助冰冰采纳,获得10
9秒前
9秒前
chengzi发布了新的文献求助10
9秒前
9秒前
目分发布了新的文献求助10
10秒前
深情安青应助吃草草没采纳,获得10
11秒前
11秒前
11秒前
13秒前
科研通AI2S应助我要做实验采纳,获得10
13秒前
11完成签到,获得积分10
13秒前
野草发布了新的文献求助10
14秒前
Lucas应助pp采纳,获得10
14秒前
sdaxczx发布了新的文献求助10
14秒前
Koalas应助cp1690采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281