Interpretable Machine Learning Model for Early Prediction of Mortality in ICU Patients with Rhabdomyolysis

接收机工作特性 机器学习 支持向量机 逻辑回归 曲线下面积 人工智能 医学 梯度升压 随机森林 重症监护 曲线下面积 病历 朴素贝叶斯分类器 重症监护医学 计算机科学 横纹肌溶解症 内科学 药代动力学
作者
Chao Liu,Xiaoli Liu,Min Zhi,Pan Hu,Xiaoming Li,Jie Hu,Quan Hong,Xiaodong Geng,Kun Chi,Feihu Zhou,Guangyan Cai,Xiangmei Chen,Xuefeng Sun
出处
期刊:Medicine and Science in Sports and Exercise [Lippincott Williams & Wilkins]
卷期号:53 (9): 1826-1834 被引量:9
标识
DOI:10.1249/mss.0000000000002674
摘要

Rhabdomyolysis (RM) is a complex set of clinical syndromes that involves the rapid dissolution of skeletal muscles. Mortality from RM is approximately 10%. This study aimed to develop an interpretable and generalizable model for early mortality prediction in RM patients.Retrospective analyses were performed on two electronic medical record databases: the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III database. We extracted data from the first 24 h after patient ICU admission. Data from the two data sets were merged for further analysis. The merged data sets were randomly divided, with 70% used for training and 30% for validation. We used the machine learning model extreme gradient boosting (XGBoost) with the Shapley additive explanation method to conduct early and interpretable predictions of patient mortality. Five typical evaluation indexes were adopted to develop a generalizable model.In total, 938 patients with RM were eligible for this analysis. The area under the receiver operating characteristic curve (AUC) of the XGBoost model in predicting hospital mortality was 0.871, the sensitivity was 0.885, the specificity was 0.816, the accuracy was 0.915, and the F1 score was 0.624. The XGBoost model performance was superior to that of other models (logistic regression, AUC = 0.862; support vector machine, AUC = 0.843; random forest, AUC = 0.825; and naive Bayesian, AUC = 0.805) and clinical scores (Sequential Organ Failure Assessment, AUC = 0.747; Acute Physiology Score III, AUC = 0.721).Although the XGBoost model is still not great from an absolute performance perspective, it provides better predictive performance than other models for estimating the mortality of patients with RM based on patient characteristics in the first 24 h of admission to the ICU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安好完成签到,获得积分10
刚刚
刚刚
深情的安青完成签到,获得积分10
刚刚
飞兰发布了新的文献求助10
刚刚
刚刚
紫沫完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
zila完成签到,获得积分10
2秒前
华仔应助王圆采纳,获得10
2秒前
2秒前
2秒前
yuan应助yam001采纳,获得10
3秒前
一杯晨汁发布了新的文献求助10
3秒前
3秒前
3秒前
Sun发布了新的文献求助10
4秒前
幸幸发布了新的文献求助10
4秒前
科研通AI2S应助jack1采纳,获得10
5秒前
MartinaLZ发布了新的文献求助30
6秒前
搜集达人应助zila采纳,获得10
6秒前
6秒前
Bink发布了新的文献求助10
6秒前
花开富贵完成签到,获得积分10
6秒前
大魁完成签到,获得积分10
7秒前
oken关注了科研通微信公众号
7秒前
阿丕啊呸完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
9秒前
南初完成签到,获得积分10
9秒前
9秒前
丘比特应助畅快行云采纳,获得10
10秒前
共享精神应助ju00采纳,获得10
10秒前
10秒前
天天快乐应助认真子默采纳,获得10
10秒前
一期一会完成签到,获得积分10
10秒前
cc完成签到,获得积分10
10秒前
ww发布了新的文献求助30
10秒前
DaDA完成签到 ,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831