逆向物流
环境经济学
计算机科学
持续性
网络规划与设计
供应链
运筹学
业务
风险分析(工程)
工程类
经济
生态学
计算机网络
生物
营销
作者
Kannan Govindan,Hadi Gholizadeh
标识
DOI:10.1016/j.tre.2021.102279
摘要
Abstract With new global regulations on supply chains (SCs), sustainable regulation mechanisms have become subject to controversy. The intention is to create and expand green and sustainable supply chains (SSC) to meet environmental and economic standards and to boost one’s position in competitive markets. This study examines the resilient sustainable reverse logistics network (RLN) process for end-of-life vehicles (ELVs) in Iran. We pursue both actual and uncertain situations that possess big data characteristics (3 V’s) in information between facilities of the proposed reverse logistics (RL), and we consider recycling technology due to its societal impacts. Due to unpredictable environmental and social factors, the various proposed network facilities may not utilize their full capacity, so we also consider situations in which the network facility capacity is disrupted. Our primary objective is to minimize the total cost of the resilient sustainable RLN. For most parameters, finding the best solution through traditional methods is time-consuming and costly. Hence, to enhance decision-making power, the value of model parameters in each scenario is considered. A Cross-Entropy (CE) algorithm with basic scenario concepts is used in robust model optimization. The results demonstrate that changing the scenario situation significantly impacts optimal environmental and social costs. In particular, when the situation is “pessimistic,” environmental impact costs are at their highest levels. Hence, scenario-based modeling of the network is a good approach to implement under uncertainty conditions. On the other hand, results show that cost savings for organizations are achieved through optimal planning of the centers' capacity to save cost, increase services, and ensure effective government response to cost-effective and instrumental market competition.
科研通智能强力驱动
Strongly Powered by AbleSci AI