Molecular descriptor analysis of approved drugs using unsupervised learning for drug repurposing

药物重新定位 聚类分析 重新调整用途 主成分分析 药品 计算机科学 药物发现 人工智能 无监督学习 机器学习 计算生物学 数据挖掘 模式识别(心理学) 生物信息学 药理学 医学 生物 生态学
作者
Sita Sirisha Madugula,Lijo John,Selvaraman Nagamani,Anamika Singh Gaur,Vladimir Poroikov,G. Narahari Sastry
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:138: 104856-104856 被引量:14
标识
DOI:10.1016/j.compbiomed.2021.104856
摘要

Machine learning and data-driven approaches are currently being widely used in drug discovery and development due to their potential advantages in decision-making based on the data leveraged from existing sources. Applying these approaches to drug repurposing (DR) studies can identify new relationships between drug molecules, therapeutic targets and diseases that will eventually help in generating new insights for developing novel therapeutics. In the current study, a dataset of 1671 approved drugs is analyzed using a combined approach involving unsupervised Machine Learning (ML) techniques (Principal Component Analysis (PCA) followed by k-means clustering) and Structure-Activity Relationships (SAR) predictions for DR. PCA is applied on all the two dimensional (2D) molecular descriptors of the dataset and the first five Principal Components (PC) were subsequently used to cluster the drugs into nine well separated clusters using k-means algorithm. We further predicted the biological activities for the drug-dataset using the PASS (Predicted Activities Spectra of Substances) tool. These predicted activity values are analyzed systematically to identify repurposable drugs for various diseases. Clustering patterns obtained from k-means showed that every cluster contains subgroups of structurally similar drugs that may or may not have similar therapeutic indications. We hypothesized that such structurally similar but therapeutically different drugs can be repurposed for the native indications of other drugs of the same cluster based on their high predicted biological activities obtained from PASS analysis. In line with this, we identified 66 drugs from the nine clusters which are structurally similar but have different therapeutic uses and can therefore be repurposed for one or more native indications of other drugs of the same cluster. Some of these drugs not only share a common substructure but also bind to the same target and may have a similar mechanism of action, further supporting our hypothesis. Furthermore, based on the analysis of predicted biological activities, we identified 1423 drugs that can be repurposed for 366 new indications against several diseases. In this study, an integrated approach of unsupervised ML and SAR analysis have been used to identify new indications for approved drugs and the study provides novel insights into clustering patterns generated through descriptor level analysis of approved drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿小新发布了新的文献求助10
1秒前
1秒前
hao完成签到,获得积分10
2秒前
70发布了新的文献求助10
2秒前
Xiaoxiao应助无奈的铅笔采纳,获得10
6秒前
7秒前
7秒前
dddd完成签到,获得积分10
7秒前
8秒前
传奇3应助lvsehx采纳,获得10
9秒前
光亮千易完成签到,获得积分10
9秒前
嘻嘻嘻完成签到,获得积分10
10秒前
11秒前
11秒前
蓝色发布了新的文献求助10
11秒前
汉堡包应助dddd采纳,获得10
11秒前
12秒前
14秒前
15秒前
神的女人完成签到,获得积分10
15秒前
lvsehx完成签到,获得积分10
17秒前
Yue发布了新的文献求助10
17秒前
18秒前
19秒前
布曲发布了新的文献求助10
20秒前
张宏宇发布了新的文献求助10
21秒前
Master完成签到,获得积分10
21秒前
蓝色完成签到,获得积分10
22秒前
相信相信的力量完成签到,获得积分10
22秒前
付莹子发布了新的文献求助10
23秒前
lyx2010完成签到,获得积分10
26秒前
伊力扎提完成签到,获得积分20
26秒前
老杨是混蛋完成签到,获得积分10
27秒前
激昂的逊完成签到 ,获得积分10
28秒前
30秒前
30秒前
ZXK完成签到 ,获得积分10
31秒前
32秒前
陈陈完成签到,获得积分10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227747
捐赠科研通 3041707
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758745