Near-infrared fluorescent read-out probe for ultra-sensitive imaging of leucine aminopeptidase in vitro and in vivo

化学 荧光 体内 荧光团 生物物理学 氨肽酶 体外 二肽 亮氨酸 生物化学 氨基酸 量子力学 生物 物理 生物技术
作者
Linlin Tao,Sha Liu,Xiaofeng Xia,Yun Chai,Si Cai,Heng Liu,Cuifen Lu,Chao Ma,Junqi Nie,Fanming Zeng,Qi Sun,Wuxiang Mao,Guichun Yang,Jun Ren,Feiyi Wang
出处
期刊:Tetrahedron [Elsevier BV]
卷期号:99: 132449-132449 被引量:9
标识
DOI:10.1016/j.tet.2021.132449
摘要

Leucine aminopeptidase (LAP), a kind of proteolytic enzyme and an indicator of many kinds of cancer. Developing effective methods for tracking endogenous LAP activity is crucial for LAP-related cancer diagnosis and treatment. In this work, we report a new near-infrared fluorescent probe: CY-P, which is capable of highly effective monitoring of endogenous LAP activity in vitro and in vivo. CY-P was constructed by incorporating a dipeptide (Cys-Leu: Cysteine-Leucine) into a water-soluble NIR-emitting fluorophore (CY–OH: a semi-cyanine scaffold). Upon exposure to LAP, the amide bond in Cys-Leu will be specifically cleaved by LAP, and subsequent an intramolecular cyclization to release the unmasked phenol-based semi-cyanine. In this process, a dramatic fluorescence enhancement at 701 nm was observed, the evaluation of LAP activity is established in terms of the relationship between fluorescence light-up efficiency and LAP activity. In our experiments, CY-P features high feedback towards LAP with various advantages, such as low detection limit (4.9 × 10−5 U mL−1), fast-response (∼9 min), good biocompatibility, and NIR emission. As expected, the probe exhibits low cytotoxicity and excellent cell membrane permeability, which is successfully used to monitor endogenous LAP activity in living cancer cells and zebrafish models. Therefore, we anticipate that this newly designed fast LAP detection platform will provide an alternative method for the studies of related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxt发布了新的文献求助10
刚刚
cecil-xu完成签到,获得积分10
1秒前
2秒前
科研通AI6应助王一一采纳,获得10
4秒前
科研通AI5应助王一一采纳,获得10
4秒前
5秒前
7秒前
cecil-xu发布了新的文献求助10
7秒前
7秒前
8秒前
li完成签到,获得积分10
8秒前
南音完成签到,获得积分10
8秒前
9秒前
科研通AI5应助YMM采纳,获得10
9秒前
还原苯醌发布了新的文献求助10
10秒前
淡淡紫山发布了新的文献求助10
10秒前
11秒前
YBW发布了新的文献求助10
11秒前
南音发布了新的文献求助30
11秒前
一一完成签到,获得积分10
11秒前
11秒前
12秒前
欣慰的真发布了新的文献求助10
14秒前
可乐发布了新的文献求助10
14秒前
脑洞疼应助zcc采纳,获得10
14秒前
空白格发布了新的文献求助10
15秒前
15秒前
火辣蛤蟆发布了新的文献求助150
17秒前
gjlt发布了新的文献求助10
17秒前
邱祺云发布了新的文献求助10
17秒前
18秒前
aeriki关注了科研通微信公众号
19秒前
wyg117发布了新的文献求助10
19秒前
大雯仔发布了新的文献求助10
21秒前
还原苯醌完成签到,获得积分10
21秒前
22秒前
菜菜子完成签到,获得积分20
22秒前
luoman5656完成签到,获得积分10
23秒前
完美世界应助木易采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Theoretical Justification and Institutional Construction of Pre-training Data Disclosure Obligations for AI Large Models 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4405483
求助须知:如何正确求助?哪些是违规求助? 3891058
关于积分的说明 12109259
捐赠科研通 3536039
什么是DOI,文献DOI怎么找? 1940194
邀请新用户注册赠送积分活动 981091
科研通“疑难数据库(出版商)”最低求助积分说明 877675