Approaches using AI in medicinal chemistry

数量结构-活动关系 药效团 化学 直觉 位阻效应 回顾性分析 立体化学 计算化学 组合化学 认知科学 心理学 全合成
作者
Christian Tyrchan,Eva Nittinger,Dea Gogishvili,Atanas Patronov,Thierry Kogej
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 111-159 被引量:1
标识
DOI:10.1016/b978-0-12-822249-2.00002-5
摘要

The challenge of pharmacological effect prediction and its relation to analog design consists of the decision of which molecule to make next on the basis of the available data, medicinal chemistry knowledge, experience, and intuition. In the second half of the 1900s century, attempts were made to relate narcotics pharmacology to their physicochemical properties by specifically using distribution and partition coefficients. This was shortly followed by Paul Ehrlich's observation to attribute the pharmacological effect of a compound to a specific functional group. However, it was only in 1971 that this observation was called pharmacophore. About 30 years after Ehrlich, Hammett related the effect of changes in structure on reaction mechanisms, specifically based on resonance interaction of an aromatic ring. This model was later extended by Taft by separating the inductive effects from the steric properties of substituents. This concept was formalized with the work of Hansch, Free, and Wilson which reasoned that the biological activity for a set of analogs could be described by the contributions that substituents or structural elements make to the activity of a parent structure. This led to the analytical description of general quantitative-structure–activity relationship studies (QSAR). If the question “What to synthesize next?” is answered then “How to synthesize it?” follows up. The prediction of chemical reactions starting from educts or the product and educing input reactants and reaction conditions is a fundamental scientific problem. As QSAR computer-aided synthesis planning (CASP) has a long history starting in the 1960s with LHASA a rule-based approach to retrosynthesis planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯的访风完成签到,获得积分10
2秒前
hello完成签到,获得积分10
2秒前
小西完成签到 ,获得积分10
3秒前
俞晓完成签到 ,获得积分10
5秒前
科研通AI5应助彩色的无声采纳,获得30
8秒前
星空_完成签到 ,获得积分10
10秒前
龙成阳完成签到,获得积分10
17秒前
aaaaa完成签到,获得积分10
18秒前
21秒前
叮叮车完成签到 ,获得积分10
22秒前
善学以致用应助钠钾蹦采纳,获得10
22秒前
艾斯完成签到 ,获得积分10
22秒前
科研通AI2S应助乐橙采纳,获得10
23秒前
26秒前
26秒前
Misea发布了新的文献求助10
30秒前
35秒前
科研小谢完成签到,获得积分10
37秒前
彩色的无声完成签到,获得积分20
40秒前
钠钾蹦发布了新的文献求助10
40秒前
Ava应助Misea采纳,获得10
43秒前
丘比特应助H_dd采纳,获得10
45秒前
wy.he应助科研通管家采纳,获得10
47秒前
wy.he应助科研通管家采纳,获得10
47秒前
笨笨芯应助科研通管家采纳,获得10
47秒前
彭于晏应助科研通管家采纳,获得10
47秒前
Akim应助科研通管家采纳,获得10
47秒前
NexusExplorer应助科研通管家采纳,获得10
47秒前
直率的乐萱完成签到 ,获得积分10
48秒前
NexusExplorer应助钠钾蹦采纳,获得10
48秒前
麋鹿完成签到 ,获得积分10
49秒前
1233333完成签到,获得积分20
52秒前
研友_Y59785应助勤劳凡雁采纳,获得10
56秒前
57秒前
Yultuz友完成签到,获得积分10
59秒前
Bin_Liu发布了新的文献求助10
1分钟前
快乐科研发布了新的文献求助10
1分钟前
科研通AI5应助笨笨忘幽采纳,获得10
1分钟前
慕青应助cap科研小能手采纳,获得10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535