Towards secure and practical machine learning via secret sharing and random permutation

计算机科学 密码学 安全多方计算 理论计算机科学 密码原语 可证明的安全性 公制(单位) 计算 秘密分享 计算机安全 人工智能 机器学习 算法 密码协议 运营管理 经济
作者
Fei Zheng,Chaochao Chen,Xiaolin Zheng,Mingjie Zhu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:245: 108609-108609 被引量:12
标识
DOI:10.1016/j.knosys.2022.108609
摘要

With the increasing demand for privacy protection, privacy-preserving machine learning has been drawing much attention from both academia and industry. However, most existing methods have their limitations in practical applications. On the one hand, although most cryptographic methods are provable secure, they bring heavy computation and communication. On the other hand, the security of many relatively efficient privacy-preserving techniques (e.g., federated learning and split learning) is being questioned, since they are non-provable secure. Inspired by previous work on privacy-preserving machine learning, we build a privacy-preserving machine learning framework by combining random permutation and arithmetic secret sharing via our compute-after-permutation technique. Our method is more efficient than existing cryptographic methods, since it can reduce the cost of element-wise function computation. Moreover, by adopting distance correlation as a metric for evaluating privacy leakage, we demonstrate that our method is more secure than previous non-provable secure methods. Overall, our proposal achieves a good balance between security and efficiency. Experimental results show that our method not only is up to 5× faster and reduces up to 80% network traffic compared with state-of-the-art cryptographic methods, but also leaks less privacy during the training process compared with non-provable secure methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
花h发布了新的文献求助10
5秒前
123完成签到,获得积分10
6秒前
7秒前
越遇完成签到 ,获得积分10
7秒前
AnnChen发布了新的文献求助30
9秒前
彩色的断秋完成签到,获得积分10
10秒前
10秒前
矛尾复虾虎鱼完成签到,获得积分10
11秒前
茉莉花茶完成签到 ,获得积分10
13秒前
13秒前
AnnChen完成签到,获得积分10
14秒前
16秒前
我是老大应助打地鼠工人采纳,获得10
17秒前
19秒前
21秒前
Orange应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
香蕉觅云应助锌锌点灯采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
21秒前
辛勤的花瓣完成签到 ,获得积分10
22秒前
caicai发布了新的文献求助10
23秒前
彩色的荔枝完成签到 ,获得积分10
26秒前
29秒前
活力寄凡完成签到,获得积分10
29秒前
就晚安喽完成签到 ,获得积分10
29秒前
29秒前
31秒前
35秒前
35秒前
niuniu完成签到,获得积分10
37秒前
叶泽完成签到,获得积分10
38秒前
迷人灵发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322050
关于积分的说明 10208614
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878