已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions

计算机科学 人工智能 机器学习 断层(地质) 分类器(UML) 数据挖掘 地质学 地震学
作者
Tianci Zhang,Jinglong Chen,Fudong Li,Kaiyu Zhang,Haixin Lv,Shuilong He,Enyong Xu
出处
期刊:Isa Transactions [Elsevier BV]
卷期号:119: 152-171 被引量:367
标识
DOI:10.1016/j.isatra.2021.02.042
摘要

The research on intelligent fault diagnosis has yielded remarkable achievements based on artificial intelligence-related technologies. In engineering scenarios, machines usually work in a normal condition, which means limited fault data can be collected. Intelligent fault diagnosis with small & imbalanced data (S&I-IFD), which refers to build intelligent diagnosis models using limited machine faulty samples to achieve accurate fault identification, has been attracting the attention of researchers. Nowadays, the research on S&I-IFD has achieved fruitful results, but a review of the latest achievements is still lacking, and the future research directions are not clear enough. To address this, we review the research results on S&I-IFD and provides some future perspectives in this paper. The existing research results are divided into three categories: the data augmentation-based, the feature learning-based, and the classifier design-based. Data augmentation-based strategy improves the performance of diagnosis models by augmenting training data. Feature learning-based strategy identifies faults accurately by extracting features from small & imbalanced data. Classifier design-based strategy achieves high diagnosis accuracy by constructing classifiers suitable for small & imbalanced data. Finally, this paper points out the research challenges faced by S&I-IFD and provides some directions that may bring breakthroughs, including meta-learning and zero-shot learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣小蜜蜂完成签到 ,获得积分10
刚刚
可爱的函函应助勋勋xxx采纳,获得10
刚刚
2秒前
lyy完成签到 ,获得积分10
3秒前
zy123发布了新的文献求助10
5秒前
独特靖巧发布了新的文献求助10
8秒前
科研通AI5应助独特靖巧采纳,获得10
17秒前
糖糖唐完成签到,获得积分10
21秒前
科研通AI5应助小林采纳,获得10
22秒前
深情安青应助123采纳,获得10
23秒前
suqiu完成签到,获得积分10
25秒前
星辰大海应助LI采纳,获得10
25秒前
26秒前
30秒前
liyongqi发布了新的文献求助10
31秒前
31秒前
举个栗子8完成签到 ,获得积分10
33秒前
9999完成签到 ,获得积分10
34秒前
小林发布了新的文献求助10
36秒前
HHYYAA发布了新的文献求助10
38秒前
40秒前
小詹完成签到,获得积分10
41秒前
领导范儿应助HHYYAA采纳,获得10
42秒前
小铭发布了新的文献求助30
43秒前
科研小白完成签到,获得积分10
43秒前
lily88发布了新的文献求助10
44秒前
研友_LJGXgn完成签到,获得积分10
45秒前
sciscisci完成签到 ,获得积分10
46秒前
LI完成签到,获得积分20
47秒前
Li应助诚心仙人掌采纳,获得10
49秒前
达瓦里希发布了新的文献求助200
49秒前
葶ting完成签到 ,获得积分10
54秒前
56秒前
57秒前
57秒前
57秒前
58秒前
1分钟前
科研民工发布了新的文献求助10
1分钟前
黄立子发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343765
关于积分的说明 10317521
捐赠科研通 3060512
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806711
科研通“疑难数据库(出版商)”最低求助积分说明 763295