Analysis of epileptic seizures based on EEG using recurrence plot images and deep learning

计算机科学 脑电图 人工智能 重现图 癫痫发作 模式识别(心理学) 特征(语言学) 递归量化分析 深度学习 非线性系统 心理学 语言学 量子力学 精神科 物理 哲学
作者
Anand Shankar,Hnin Kay Khaing,Samarendra Dandapat,Shovan Barma
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:69: 102854-102854 被引量:44
标识
DOI:10.1016/j.bspc.2021.102854
摘要

This work proposes deep learning (DL) based epileptic seizure detection by generating 2D recurrence plot (RP) images of EEG signals for specific brain rhythms. The DL bypasses hand-crafted feature engineering, but extracts feature automatically from input images has displayed significant performance in various domain classification tasks. However, generating 2D images from 1D EEG signals and its quality assessment for DL pipeline has not been addressed properly, which is very crucial as the performance of the DL highly relies on input quality. Besides, suitable brain rhythm for seizure analysis has not been explored properly. Therefore, in this work, 2D input images have been generated by the RP technique from EEG signals for specific brain rhythms by preserving the nonlinear characteristics of EEG and employed a well-known DL, called convolution neural network (CNN). For, experimental validation, two well recognized EEG databases for seizure analysis from Bonn University and CHB-MIT (PhysioNet) have been considered. Eventually, three major parameters — recurrence threshold, time delay, and embedding dimension for an RP image generation have been evaluated and detailed. The results show that the proposed method can achieve classification accuracy up to 93%, which is significantly higher and the δ rhythm has been found suitable for seizure detection. The entropy of RP has been found as a suitable parameter for image quality assessment along with two global statistical parameters such as skewness of root mean square and standard of RP images. In performance evaluation, the proposed method demonstrates its competency by displaying the best classification accuracy compared to related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助感冒灵采纳,获得30
2秒前
4秒前
啟晨发布了新的文献求助50
4秒前
6秒前
9秒前
曲光彩完成签到,获得积分10
10秒前
小马甲应助江宿采纳,获得10
11秒前
清云发布了新的文献求助10
11秒前
14秒前
16秒前
bkagyin应助yang采纳,获得10
17秒前
刘柳完成签到 ,获得积分10
18秒前
18秒前
科研通AI5应助清云采纳,获得10
19秒前
23秒前
yyz发布了新的文献求助10
23秒前
上官若男应助Andrew采纳,获得10
26秒前
26秒前
aging123完成签到,获得积分10
26秒前
狮子座完成签到 ,获得积分10
27秒前
如初发布了新的文献求助20
28秒前
28秒前
TwenYao完成签到 ,获得积分20
28秒前
28秒前
隐形曼青应助ww采纳,获得10
28秒前
30秒前
Su发布了新的文献求助10
32秒前
33秒前
34秒前
34秒前
34秒前
yang发布了新的文献求助10
35秒前
李爱国应助swy采纳,获得10
35秒前
一只羚羊完成签到 ,获得积分10
35秒前
aging123发布了新的文献求助10
37秒前
无花果应助Su采纳,获得10
38秒前
38秒前
38秒前
学习学习学习完成签到,获得积分10
38秒前
小羊子发布了新的文献求助10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842830
求助须知:如何正确求助?哪些是违规求助? 3384827
关于积分的说明 10537714
捐赠科研通 3105396
什么是DOI,文献DOI怎么找? 1710290
邀请新用户注册赠送积分活动 823577
科研通“疑难数据库(出版商)”最低求助积分说明 774149