WAFFLE: Watermarking in Federated Learning

计算机科学 再培训 过程(计算) 机器学习 人工智能 数据建模 数字水印 计算机安全 数据库 操作系统 图像(数学) 业务 国际贸易
作者
Buse G. A. Tekgul,Yuxi Xia,Samuel Marchal,N. Asokan
标识
DOI:10.1109/srds53918.2021.00038
摘要

Federated learning is a distributed learning technique where machine learning models are trained on client devices in which the local training data resides. The training is coordinated via a central server which is, typically, controlled by the intended owner of the resulting model. By avoiding the need to transport the training data to the central server, federated learning improves privacy and efficiency. But it raises the risk of model theft by clients because the resulting model is available on every client device. Even if the application software used for local training may attempt to prevent direct access to the model, a malicious client may bypass any such restrictions by reverse engineering the application software. Watermarking is a well-known deterrence method against model theft by providing the means for model owners to demonstrate ownership of their models. Several recent deep neural network (DNN) watermarking techniques use backdooring: training the models with additional mislabeled data. Backdooring requires full access to the training data and control of the training process. This is feasible when a single party trains the model in a centralized manner, but not in a federated learning setting where the training process and training data are distributed among several client devices. In this paper, we present WAFFLE, the first approach to watermark DNN models trained using federated learning. It introduces a retraining step at the server after each aggregation of local models into the global model. We show that WAFFLE efficiently embeds a resilient watermark into models incurring only negligible degradation in test accuracy (-0.17%), and does not require access to training data. We also introduce a novel technique to generate the backdoor used as a watermark. It outperforms prior techniques, imposing no communication, and low computational (+3.2%) overhead11The research report version of this paper is also available in https://arxiv.org/abs/2008.07298, and the code for reproducing our work can be found at https://github.com/ssg-research/WAFFLE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小刘马发布了新的文献求助10
刚刚
Rubby应助大哥我猪呢采纳,获得10
刚刚
汉堡包应助霸王花采纳,获得10
1秒前
迷人人雄发布了新的文献求助10
1秒前
青青子衿发布了新的文献求助10
1秒前
2秒前
WPP发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
_蝴蝶小姐发布了新的文献求助10
4秒前
科研助手6应助显隐采纳,获得10
4秒前
5秒前
科小余完成签到 ,获得积分10
5秒前
情怀应助silence采纳,获得10
5秒前
7秒前
天天快乐应助勇往直前采纳,获得10
7秒前
111111发布了新的文献求助10
7秒前
zengyan发布了新的文献求助10
8秒前
yy发布了新的文献求助10
9秒前
瓦片制度完成签到 ,获得积分10
9秒前
112我的发布了新的文献求助10
9秒前
9秒前
不吃蛋黄完成签到,获得积分20
10秒前
风子完成签到 ,获得积分10
11秒前
11秒前
GBKYWY发布了新的文献求助10
12秒前
ZYP发布了新的文献求助10
13秒前
蜡笔完成签到,获得积分10
13秒前
痴笑发布了新的文献求助10
13秒前
14秒前
15秒前
霸气的香芦应助闰月采纳,获得30
16秒前
16秒前
zhan发布了新的文献求助10
16秒前
16秒前
16秒前
Jin发布了新的文献求助10
17秒前
17秒前
WPP完成签到,获得积分10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139251
求助须知:如何正确求助?哪些是违规求助? 3676140
关于积分的说明 11620152
捐赠科研通 3370289
什么是DOI,文献DOI怎么找? 1851331
邀请新用户注册赠送积分活动 914485
科研通“疑难数据库(出版商)”最低求助积分说明 829253