Physics-Informed Neural Networks with Hard Constraints for Inverse Design

反向 数学优化 拉格朗日 偏微分方程 主题(文档) 人工神经网络 计算机科学 应用数学 数学 拓扑(电路) 理论计算机科学 数学分析 几何学 图书馆学 人工智能 组合数学
作者
Lu Lu,Raphaël Pestourie,Wen‐Dong Yao,Zhicheng Wang,Francesc Verdugo,Steven G. Johnson
出处
期刊:SIAM Journal on Scientific Computing [Society for Industrial and Applied Mathematics]
卷期号:43 (6): B1105-B1132 被引量:191
标识
DOI:10.1137/21m1397908
摘要

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft .Inverse design arises in a variety of areas in engineering such as acoustic, mechanics, thermal/electronic transport, electromagnetism, and optics.Topology optimization is an important form of inverse design, where one optimizes a designed geometry to achieve targeted properties parameterized by the materials at every point in a design region.This optimization is challenging, because it has a very high dimensionality and is usually constrained by partial differential equations (PDEs) and additional inequalities.Here, we propose a new deep learning method---physics-informed neural networks with hard constraints (hPINNs)---for solving topology optimization.hPINN leverages the recent development of PINNs for solving PDEs, and thus does not require a large dataset (generated by numerical PDE solvers) for training.However, all the constraints in PINNs are soft constraints, and hence we impose hard constraints by using the penalty method and the augmented Lagrangian method.We demonstrate the effectiveness of hPINN for a holography problem in optics and a fluid problem of Stokes flow.We achieve the same objective as conventional PDE-constrained optimization methods based on adjoint methods and numerical PDE solvers, but find that the design obtained from hPINN is often smoother for problems whose solution is not unique.Moreover, the implementation of inverse design with hPINN can be easier than that of conventional methods because it exploits the extensive deep-learning software infrastructure.\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs .inverse design, topology optimization, partial differential equations, physicsinformed neural networks, penalty method, augmented Lagrangian method \bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs .35R30, 65K10, 68T20
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nwuzrq完成签到 ,获得积分20
1秒前
煎饼果子不加葱完成签到,获得积分10
2秒前
赞zan完成签到,获得积分10
3秒前
4秒前
5秒前
6秒前
chen123发布了新的文献求助10
11秒前
知性的绿柏完成签到 ,获得积分10
12秒前
16秒前
16秒前
Dream完成签到,获得积分0
19秒前
坚强的广山应助Enchanted采纳,获得30
20秒前
梨理栗完成签到,获得积分10
21秒前
23秒前
26秒前
打打应助sam采纳,获得10
27秒前
cherry发布了新的文献求助10
28秒前
太阳雨发布了新的文献求助10
30秒前
33秒前
35秒前
hs发布了新的文献求助10
36秒前
深情安青应助jane采纳,获得10
36秒前
快来帮帮我给快来帮帮我的求助进行了留言
37秒前
吴大宝完成签到,获得积分10
38秒前
38秒前
sam发布了新的文献求助10
41秒前
陆晓亦完成签到,获得积分10
44秒前
田様应助松松果采纳,获得10
46秒前
汉堡包应助hs采纳,获得10
46秒前
46秒前
gxpjzbg完成签到,获得积分10
48秒前
多多快乐发布了新的文献求助10
48秒前
50秒前
51秒前
51秒前
54秒前
小Y发布了新的文献求助10
54秒前
小凯完成签到,获得积分10
55秒前
黛寒完成签到 ,获得积分10
55秒前
xbz发布了新的文献求助10
55秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2547155
求助须知:如何正确求助?哪些是违规求助? 2176129
关于积分的说明 5602358
捐赠科研通 1896866
什么是DOI,文献DOI怎么找? 946470
版权声明 565383
科研通“疑难数据库(出版商)”最低求助积分说明 503691