Electronic Modulation of Electrocatalytically Active Center of Cu7S4 Nanodisks by Cobalt-Doping for Highly Efficient Oxygen Evolution Reaction

塔菲尔方程 过电位 电催化剂 材料科学 析氧 电子转移 催化作用 活动中心 纳米技术 分解水 密度泛函理论 化学工程 化学 无机化学 电极 光化学 物理化学 电化学 计算化学 有机化学 工程类 光催化
作者
Qun Li,Xianfu Wang,Kai Tang,Mengfan Wang,Chao Wang,Chenglin Yan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12230-12239 被引量:158
标识
DOI:10.1021/acsnano.7b05606
摘要

Cu-based electrocatalysts have seldom been studied for water oxidation because of their inferior activity and poor stability regardless of their low cost and environmentally benign nature. Therefore, exploring an efficient way to improve the activity of Cu-based electrocatalysts is very important for their practical application. Modifying electronic structure of the electrocatalytically active center of electrocatalysts by metal doping to favor the electron transfer between catalyst active sites and electrode is an important approach to optimize hydrogen and oxygen species adsorption energy, thus leading to the enhanced intrinsic electrocatalytic activity. Herein, Co-doped Cu7S4 nanodisks were synthesized and investigated as highly efficient electrocatalyst for oxygen evolution reaction (OER) due to the optimized electronic structure of the active center. Density-functional theory (DFT) calculations reveal that Co-engineered Cu7S4 could accelerate electron transfer between Co and Cu sites, thus decrease the energy barriers of intermediates and products during OER, which are crucial for enhanced catalytic properties. As expected, Co-engineered Cu7S4 nanodisks exhibit a low overpotential of 270 mV to achieve current density of 10 mA cm–2 as well as decreased Tafel slope and enhanced turnover frequencies as compared to bare Cu7S4. This discovery not only provides low-cost and efficient Cu-based electrocatalyst by Co doping, but also exhibits an in-depth insight into the mechanism of the enhanced OER properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
阿哲完成签到,获得积分10
刚刚
广州东站完成签到,获得积分10
1秒前
good233完成签到,获得积分10
1秒前
坚定尔蓝完成签到,获得积分10
1秒前
2秒前
吕健完成签到,获得积分10
3秒前
4秒前
twotwo的小乌龟完成签到 ,获得积分10
5秒前
Lyw完成签到 ,获得积分10
5秒前
charry发布了新的文献求助10
6秒前
锦鲤完成签到 ,获得积分10
6秒前
shotaro发布了新的文献求助10
6秒前
Fighter发布了新的文献求助10
7秒前
朴素的幻然完成签到,获得积分10
7秒前
鳗鱼涵梅完成签到,获得积分10
7秒前
谦让的越泽完成签到,获得积分10
8秒前
大仙完成签到,获得积分10
9秒前
金金完成签到 ,获得积分10
9秒前
感动城完成签到,获得积分10
12秒前
Fighter完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
篮孩子完成签到,获得积分10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
俭朴的乐巧完成签到 ,获得积分10
14秒前
严锦强完成签到,获得积分10
16秒前
zhuxd完成签到,获得积分10
17秒前
17秒前
CAE上路到上吊完成签到,获得积分10
18秒前
19秒前
yeyuchenfeng完成签到,获得积分10
26秒前
26秒前
du完成签到 ,获得积分10
26秒前
大白菜发布了新的文献求助10
27秒前
shotaro完成签到,获得积分10
27秒前
Rita完成签到,获得积分10
28秒前
霸气南珍发布了新的文献求助10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243427
求助须知:如何正确求助?哪些是违规求助? 3776859
关于积分的说明 11856880
捐赠科研通 3431265
什么是DOI,文献DOI怎么找? 1883038
邀请新用户注册赠送积分活动 934999
科研通“疑难数据库(出版商)”最低求助积分说明 841468