脂肪肝
医学
代谢综合征
脂肪性肝炎
脂肪变性
胰岛素抵抗
非酒精性脂肪肝
血脂异常
内科学
内分泌学
生物信息学
糖尿病
疾病
生物
作者
Marie‐Louise Ricketts,Bradley S. Ferguson
标识
DOI:10.2174/1381612824666171129204054
摘要
Background: Cardiovascular disease (CVD) is currently the leading cause of death globally. The metabolic syndrome (MetS), a clustering of risk factors including hypertension, hyperglycemia, elevated low-density lipoprotein (LDL) cholesterol, reduced high-density lipoprotein (HDL) cholesterol and increased visceral adiposity, is a significant risk factor for the development of CVD. Non-alcoholic fatty liver disease (NAFLD), often referred to as the hepatic manifestation of MetS, is a constellation of progressive liver disorders closely linked to obesity, diabetes, and insulin resistance. NAFLD initially presents as relatively benign, non-progressive hepatic steatosis, but it may, in certain individuals, progress to nonalcoholic steatohepatitis, fibrosis, cirrhosis, or hepatocellular carcinoma. Currently, there are no validated treatments for NAFLD. Polyphenols are important bioactive dietary compounds and may represent a natural complementary and integrative therapy for the treatment of CVDassociated risk factors, including elevated serum cholesterol and triglyceride levels, as well as NAFLD. Understanding their molecular mechanisms of action is important in the design of future human intervention studies. Methods: Several studies utilizing in vitro and in vivo models have helped to identify underlying molecular mechanisms of action of polyphenols. Results: This review will highlight recent advances regarding the molecular actions of dietary procyanidins, with a special focus on those originating from procyanidin-rich grape seed extracts, with a focus on the signaling pathways utilized to exert beneficial metabolic effects. Conclusion: Modulation of nuclear receptor activity and histone deacetylase inhibition has been identified as underlying mechanisms contributing to procyanidin-mediated amelioration of dyslipidemia and steatosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI