DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 声学 政治 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:228: 178-184 被引量:1555
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独雨梅完成签到,获得积分10
刚刚
爱吃饼干的土拨鼠完成签到,获得积分10
1秒前
文艺的雨完成签到,获得积分10
1秒前
然463完成签到 ,获得积分10
1秒前
美丽的芙完成签到 ,获得积分10
2秒前
xiaojin完成签到,获得积分10
2秒前
xdf完成签到,获得积分10
2秒前
3秒前
wendy完成签到,获得积分10
3秒前
李燕伟完成签到 ,获得积分10
4秒前
平常的问雁完成签到 ,获得积分10
4秒前
阿峰完成签到,获得积分10
4秒前
俏皮道之完成签到 ,获得积分10
4秒前
5秒前
夏晴晴完成签到 ,获得积分10
5秒前
菠萝蜜关注了科研通微信公众号
6秒前
小小完成签到,获得积分10
7秒前
呼噜噜完成签到 ,获得积分10
8秒前
俏皮白云完成签到 ,获得积分10
8秒前
Hasghab完成签到,获得积分10
9秒前
活力的秋灵完成签到,获得积分10
9秒前
jing关注了科研通微信公众号
9秒前
博士完成签到 ,获得积分10
9秒前
健壮惋清完成签到 ,获得积分10
9秒前
10秒前
刘月茹完成签到 ,获得积分10
10秒前
开心的抽屉完成签到,获得积分10
10秒前
明亮的青旋完成签到 ,获得积分10
10秒前
zero完成签到,获得积分10
10秒前
鹿若风完成签到,获得积分10
12秒前
12秒前
neversay4ever发布了新的文献求助10
12秒前
石头完成签到 ,获得积分10
14秒前
专一的访文完成签到,获得积分10
15秒前
alefa完成签到 ,获得积分20
16秒前
丰息完成签到 ,获得积分10
16秒前
牛肉面完成签到 ,获得积分10
16秒前
初昀杭完成签到 ,获得积分10
16秒前
初昀杭完成签到 ,获得积分10
16秒前
CN柏原崇完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079983
求助须知:如何正确求助?哪些是违规求助? 4298027
关于积分的说明 13389776
捐赠科研通 4121516
什么是DOI,文献DOI怎么找? 2257145
邀请新用户注册赠送积分活动 1261455
关于科研通互助平台的介绍 1195563