DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics

分子动力学 计算机科学 动力学(音乐) 人工智能 计算科学 能量(信号处理) 代表(政治) 统计物理学 计算化学 物理 化学 量子力学 政治学 政治 声学 法学
作者
Han Wang,Linfeng Zhang,Jiequn Han,E Weinan
出处
期刊:Computer Physics Communications [Elsevier BV]
卷期号:228: 178-184 被引量:1313
标识
DOI:10.1016/j.cpc.2018.03.016
摘要

Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model. Program Title: DeePMD-kit Program Files doi: http://dx.doi.org/10.17632/hvfh9yvncf.1 Licensing provisions: LGPL Programming language: Python/C++ Nature of problem: Modeling the many-body atomic interactions by deep neural network models. Running molecular dynamics simulations with the models. Solution method: The Deep Potential for Molecular Dynamics (DeePMD) method is implemented based on the deep learning framework TensorFlow. Supports for using a DeePMD model in LAMMPS and i-PI, for classical and quantum (path integral) molecular dynamics are provided. Additional comments including Restrictions and Unusual features: The code defines a data protocol such that the energy, force, and virial calculated by different third-party molecular simulation packages can be easily processed and used as model training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文献高手完成签到 ,获得积分10
6秒前
boblau完成签到,获得积分10
11秒前
徐慕源完成签到,获得积分10
26秒前
完美世界应助王冠军采纳,获得10
27秒前
幽默亦旋完成签到 ,获得积分10
28秒前
凌晨五点的完成签到,获得积分10
29秒前
30秒前
清仔发布了新的文献求助10
35秒前
xiaofeiyan完成签到 ,获得积分10
36秒前
Research完成签到 ,获得积分10
36秒前
阳光c完成签到 ,获得积分10
37秒前
如履平川完成签到 ,获得积分10
42秒前
慕子默完成签到,获得积分10
44秒前
cdercder应助科研通管家采纳,获得10
46秒前
今后应助科研通管家采纳,获得10
46秒前
cdercder应助科研通管家采纳,获得10
46秒前
木子林夕完成签到,获得积分10
54秒前
归尘应助光亮向雁采纳,获得10
54秒前
文献文献完成签到 ,获得积分10
59秒前
木乙完成签到 ,获得积分10
1分钟前
范白容完成签到 ,获得积分10
1分钟前
manfullmoon完成签到,获得积分10
1分钟前
msli完成签到 ,获得积分10
1分钟前
惜曦完成签到 ,获得积分10
1分钟前
淼淼之锋完成签到,获得积分10
1分钟前
manforfull完成签到,获得积分10
1分钟前
1分钟前
王冠军发布了新的文献求助10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
SucceedIn完成签到,获得积分10
1分钟前
KBRS完成签到,获得积分10
1分钟前
清仔完成签到,获得积分20
1分钟前
zyw完成签到 ,获得积分10
1分钟前
宇文数学完成签到 ,获得积分10
1分钟前
pwang_lixin完成签到,获得积分10
1分钟前
一苇以航完成签到 ,获得积分10
1分钟前
w2503完成签到,获得积分10
1分钟前
感动的仙人掌完成签到 ,获得积分20
1分钟前
ccc完成签到 ,获得积分10
1分钟前
pwang_ecust完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777682
求助须知:如何正确求助?哪些是违规求助? 3323111
关于积分的说明 10213025
捐赠科研通 3038455
什么是DOI,文献DOI怎么找? 1667400
邀请新用户注册赠送积分活动 798115
科研通“疑难数据库(出版商)”最低求助积分说明 758273