材料科学
能量收集
灵活性(工程)
热电效应
数码产品
储能
可穿戴计算机
热电发电机
可穿戴技术
同轴
热能
能量转换
热的
静电纺丝
高效能源利用
能量(信号处理)
热能储存
功率(物理)
柔性电子器件
电势能
纳米纤维
能量转换效率
纳米技术
机械工程
热稳定性
热电材料
电子设备和系统的热管理
电力电子
计算机科学
汽车工程
工艺工程
可再生能源
理论(学习稳定性)
热电冷却
作者
Haoran Yu,Dequan Sun,Wenbo Dong,Fumin Li,Yuqing Zhou,Zhang Ye,Le Li,Binchuan Cao,Jidong Shi,Jiaxin Yu,Caofeng Pan
标识
DOI:10.1002/adfm.202525233
摘要
ABSTRACT Wearable thermoelectric generators (TEGs) offer a sustainable pathway to power emerging electronics by harvesting body heat, yet their practical adoption is hindered by limited energy conversion efficiency and poor thermal comfort. To overcome these restrictions, we herein develop stretchable thermo‐regulated TE yarns (STRTEYs) via coaxial electrospinning coupled with coagulation‐bath wet spinning. The resulting shell‐core nanofiber based STRTEYs exhibit high flexibility (>35%), excellent adaptive phase‐change PTM (110 J/g), long‐term stability and enhanced TE performance ( σ of 32 S/cm, S of 46 µV/K). Noteworthy, through efficient latent heat management, the STRTEYs achieve an exceptional ≈393 s extension in effective TE output duration, demonstrating remarkable synergy between PTM and energy harvesting. Furthermore, the STRTEYs maintained stable TE property ( S = 45.85 µV/K) after 5‐month storage and notably enhanced TE output via temperature difference stability. The mask integrated with STRTEYs can achieve thermal energy collection and self‐powered real‐time detection of physiological signals. In summary, the STRTEYs successfully achieved efficient integration of multiple functions including energy harvesting, adaptive PTM, and self‐powered sensing, providing a new research direction for developing advanced multifunctional TEGs and promoting their application in wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI