Machine Learning in Microbiome Research and Engineering

作者
Ryan De Sotto,Nikhil Aggarwal,Elizabeth Huiwen Tham,Matthew Wook Chang
出处
期刊:ACS Synthetic Biology [American Chemical Society]
标识
DOI:10.1021/acssynbio.5c00273
摘要

Microbiomes, complex communities of microorganisms and their genetic material, hold immense potential for addressing global challenges in diverse sectors, including healthcare, agriculture, and bioproduction. Engineering these intricate ecosystems, however, necessitates a comprehensive understanding of the complex web of microbial interactions. The emergence of machine learning (ML) has revolutionized microbiome research, offering powerful tools to analyze massive data sets, uncover hidden patterns, and predict microbial behavior. ML algorithms have demonstrated remarkable success in identifying and characterizing microbial communities, predicting interactions between organisms and optimizing the design of microbial communities for specific functions. This Perspective examines the transformative applications of ML in the context of microbiome engineering, encompassing both microbiome data analysis and the targeted manipulation of microbial communities. These techniques employ a variety of strategies, including the manipulation of quorum sensing molecules, antimicrobial peptides, growth conditions, the introduction of probiotics, and the utilization of bacteriophages. By integrating ML with experimental approaches, researchers are pushing the boundaries of microbiome engineering, paving the way for novel applications in diverse fields. However, it is important to acknowledge the challenges that ML algorithms face, such as the limited availability of high-quality, large-scale data sets, the inherent complexity of biological systems, and the need for improved integration of experimental and computational methods. This perspective further discusses the future perspectives of the field, highlighting expected developments in data generation, algorithm development, and interdisciplinary collaboration. These advancements hold the key to unlocking the full potential of microbial communities for addressing pressing global challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
ylyao完成签到,获得积分10
5秒前
baishuo完成签到,获得积分10
5秒前
花里尘完成签到,获得积分10
6秒前
时代更迭完成签到 ,获得积分10
10秒前
BowieHuang应助西科柱子采纳,获得10
10秒前
闻屿完成签到,获得积分10
13秒前
15秒前
无极微光应助白华苍松采纳,获得20
17秒前
悦耳冰蓝完成签到,获得积分10
19秒前
景妙海发布了新的文献求助30
20秒前
NINI完成签到 ,获得积分10
20秒前
21秒前
zhangj696完成签到,获得积分10
23秒前
yuan完成签到,获得积分10
27秒前
29秒前
清脆的秋寒完成签到,获得积分10
31秒前
彭于晏应助景妙海采纳,获得30
32秒前
量子星尘发布了新的文献求助10
34秒前
Cylair完成签到,获得积分10
35秒前
35秒前
花样年华完成签到,获得积分10
36秒前
VicTarZ完成签到,获得积分10
37秒前
岁月旧曾谙完成签到,获得积分10
38秒前
Healer完成签到,获得积分10
40秒前
chenzhuod完成签到,获得积分10
40秒前
wang5945发布了新的文献求助10
40秒前
笑对人生完成签到 ,获得积分10
41秒前
狮子沟核聚变骡子完成签到 ,获得积分10
43秒前
柴yuki完成签到 ,获得积分10
43秒前
萝卜青菜完成签到 ,获得积分10
47秒前
49秒前
49秒前
安静严青完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
51秒前
多边形完成签到 ,获得积分10
51秒前
凤飞完成签到,获得积分10
52秒前
小乙猪完成签到 ,获得积分0
52秒前
今年我必胖20斤完成签到,获得积分10
53秒前
饱满芷卉完成签到,获得积分10
53秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771707
捐赠科研通 4615882
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590