Identification of diagnostic and prognostic biomarkers for tuberculosis based on plasma proteomics

蛋白质组学 肺结核 生物 结核分枝杆菌 定量蛋白质组学 计算生物学 疾病 DNA微阵列 免疫学 生物信息学 生物标志物 鉴定(生物学) 血液蛋白质类 基因表达谱 分子诊断学 膜蛋白 细胞外小泡 串联质量标签 免疫系统 蛋白质-蛋白质相互作用 基因表达 结核病诊断 基因 抗体 医学 生物标志物发现 细胞外 微阵列 胞外囊泡 炎症 折叠变化
作者
Yan Hu,Chao Quan,Yuanyuan Zhou,Shangyan Liang,Xuan Wang,Jun Li,Wenqi Liu,Yuzhong Xu,Peng Liu
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:20 (12): e0339558-e0339558
标识
DOI:10.1371/journal.pone.0339558
摘要

Background The differential diagnosis between Tuberculosis (TB) and Non-tuberculous Mycobacteria (NTM) has historically been constrained by the inadequate sensitivity and specificity of current diagnostic methods. Furthermore, distinguishing between Active Tuberculosis (ATB) and Latent Tuberculosis Infection (LTBI) poses significant challenges. This study aims to develop a molecular differentiation system for ATB, LTBI, and NTM by integrating plasma proteomics with multi-dimensional analytical techniques, while also exploring key biomarkers associated with disease progression and treatment response. Methods Using label-free quantitative technology, we conducted a plasma proteomics analysis across five groups: ATB, LTBI, NTM, Cured Patients (CPs), and Healthy Donors (HD). Differentially Expressed Proteins (DEPs) were identified through screening (FC > 1.5 or <0.67, P < 0.05), followed by Gene Ontology/KEGG pathway enrichment, STRING interaction network, and Mfuzz dynamic clustering analysis to systematically elucidate molecular characteristics. Experimental data were validated through a multidimensional quality control system (Pearson correlation coefficient, peptide distribution, molecular weight distribution, etc.). Enzyme-linked immunosorbent assay (ELISA) was employed to detect the plasma expression levels of target proteins across the groups and to facilitate comparisons. Results This study identified 1,338 non-redundant proteins across five cohorts. Comparative analysis revealed 142 DEPs across the three comparative groups (ATB, LTBI, and NTM), which were primarily localized in the extracellular domain. Key findings include: 27 DEPs in the ATB-LTBI group, primarily enriched in inflammatory responses (such as A2M, IL-1R2) and epithelial barrier functions (TGM3, KRT3); 69 DEPs in the ATB-NTM group, characterized by significant changes in immunoglobulin light chains (IGLV2–11) and innate immune effector molecules (S100A8); 46 DEPs in the NTM-LTBI group, closely related to lipid metabolism (APOC3) and extracellular matrix remodeling (FN1). KEGG pathway analysis revealed that DEPs in the ATB-LTBI group were enriched in nitrogen metabolism pathways, those in the ATB-NTM group were associated with thyroid hormone synthesis, and the NTM-LTBI group was involved in phagosome function. Dynamic clustering results showed six treatment response modules: Cluster 1/2 (riboflavin metabolism, complement coagulation pathway) were activated post-treatment, Cluster 3/4 (proteasome, cardiac signaling pathway) exhibited partial reversal in expression, and Cluster 5/6 (platelet activation, cytoskeleton) showed delayed regression. Research confirmed 10 differential proteins between the ATB-CPs and ATB-HD groups, including S100A8, LTA4H, and DEFA1B, which constitute a molecular fingerprint specific to ATB. ELISA validation confirmed significantly elevated S100A8 and GPX3 in ATB group, while NTM group showed higher FGB and lower ATRN levels. Conclusions This study systematically reveals the plasma proteomic characteristics under infection statuses caused by different mycobacteria. A discrimination framework for ATB/LTBI/NTM was constructed based on disease-specific differential proteins, overcoming the limitations of traditional diagnostic techniques in distinguishing infection states. Through dynamic analysis of six temporal therapeutic modules, the reprogramming patterns of the host protein network during tuberculosis treatment were elucidated. This research lays a multidimensional molecular foundation for the precise typing, personalized treatment, and prognostic evaluation of mycobacterial infections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心市民完成签到 ,获得积分10
2秒前
四月是你的谎言完成签到 ,获得积分10
2秒前
充电宝应助tigger采纳,获得10
3秒前
5秒前
扣子完成签到 ,获得积分10
7秒前
Lauren完成签到 ,获得积分10
7秒前
Echo1128完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
w婷完成签到 ,获得积分0
9秒前
笨笨的蓝天完成签到,获得积分10
11秒前
Skyllne完成签到 ,获得积分10
13秒前
14秒前
wing完成签到 ,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
诚心的大炮完成签到,获得积分10
17秒前
rtqprit完成签到,获得积分10
20秒前
20秒前
QAQSS完成签到 ,获得积分10
21秒前
如愿常隐行完成签到 ,获得积分10
25秒前
zxy14完成签到,获得积分10
30秒前
baobeikk完成签到,获得积分10
30秒前
研究生完成签到 ,获得积分10
31秒前
mufcyang完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
downdown完成签到,获得积分10
35秒前
害羞的书芹完成签到,获得积分10
41秒前
ksl完成签到 ,获得积分10
41秒前
陈粒完成签到 ,获得积分10
43秒前
害羞的雁易完成签到 ,获得积分10
43秒前
44秒前
量子星尘发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
49秒前
独特的忆彤完成签到 ,获得积分10
51秒前
O_O完成签到 ,获得积分10
57秒前
草莓熊1215完成签到 ,获得积分10
58秒前
xiaoliu完成签到,获得积分10
1分钟前
wwf完成签到,获得积分10
1分钟前
霜之哀伤完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839