Chloroplasts in plant cells show active glassy behavior under low-light conditions

叶绿体 生物物理学 细胞器 生物 化学物理 细胞生物学 化学 生物化学 基因
作者
Nico Schramma,Cintia Perugachi Israëls,Maziyar Jalaal
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (3) 被引量:10
标识
DOI:10.1073/pnas.2216497120
摘要

Plants have developed intricate mechanisms to adapt to changing light conditions. Besides photo- and helio- tropism -- the differential growth towards light and the diurnal motion with respect to sunlight -- chloroplast motion acts as a fast mechanism to change the intracellular structure of leaf cells. While chloroplasts move towards the sides of the plant cell to avoid strong light, they accumulate and spread out into a layer on the bottom of the cell at low light to increase the light absorption efficiency. Although the motion of chloroplasts has been studied for over a century, the collective organelle-motion leading to light adapting self-organized structures remains elusive. Here we study the active motion of chloroplasts under dim light conditions, leading to an accumulation in a densely packed quasi-2D layer. We observe burst-like re-arrangements and show that these dynamics resemble colloidal systems close to the glass transition by tracking individual chloroplasts. Furthermore, we provide a minimal mathematical model to uncover relevant system parameters controlling the stability of the dense configuration of chloroplasts. Our study suggests that the meta-stable caging close to the glass-transition in the chloroplast mono-layer serves a physiological relevance. Chloroplasts remain in a spread-out configuration to increase the light uptake, but can easily fluidize when the activity is increased to efficiently re-arrange the structure towards an avoidance state. Our research opens new questions about the role that dynamical phase transitions could play in self-organized intracellular responses of plant cells towards environmental cues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllxxx完成签到 ,获得积分10
1秒前
柚子发布了新的文献求助10
3秒前
研友_VZG7GZ应助爱听歌笑寒采纳,获得10
3秒前
3秒前
shan完成签到,获得积分10
7秒前
7秒前
11秒前
11秒前
Ricardo完成签到 ,获得积分10
11秒前
12秒前
xx发布了新的文献求助10
15秒前
18秒前
renwoxing发布了新的文献求助10
19秒前
22秒前
沉默的半凡完成签到,获得积分10
22秒前
吴千雨完成签到,获得积分10
23秒前
27秒前
28秒前
xiaoxin完成签到,获得积分10
30秒前
31秒前
beyondjun发布了新的文献求助10
32秒前
Ryuki发布了新的文献求助10
34秒前
NexusExplorer应助jcae123采纳,获得10
36秒前
36秒前
renwoxing完成签到,获得积分10
37秒前
鳄鱼蛋完成签到,获得积分10
37秒前
DYXX完成签到 ,获得积分10
41秒前
LZL完成签到 ,获得积分10
42秒前
大模型应助缥缈的青旋采纳,获得10
43秒前
43秒前
pluto应助千里烟泼采纳,获得20
43秒前
jcae123发布了新的文献求助10
47秒前
iidae完成签到,获得积分10
47秒前
爆美完成签到 ,获得积分10
49秒前
杨tong完成签到 ,获得积分10
52秒前
54秒前
56秒前
57秒前
蜻蜓卡布达完成签到,获得积分10
57秒前
缪甲烷完成签到,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535