A scalable, hyperstable intelligent fibre velocimeter for dynamic digitisation of resistance training

作者
Jingyu Ouyang,Pan Li,Yi Zou,Guangcong Liu,Hongtao Zeng,Rui Han,Duo Li,Weitao Zheng,Jingbo Sun,Guangming Tao
出处
期刊:National Science Review [Oxford University Press]
标识
DOI:10.1093/nsr/nwaf560
摘要

Abstract Real-time accuracy and continuous dynamic monitoring capability of devices are crucial for the scientific configuration and dynamic modulation of resistance training, such as strength training, rehabilitation, and in-orbit training for astronauts. However, developing monitoring devices capable of providing real-time, accurate, and dynamic quantification for high-velocity resistance training remains a notable challenge. Here, we present a scalable and hyperstable intelligent fibre velocimeter designed for the digital, real-time, and dynamic monitoring of resistance training. By incorporating the fibre velocimeter as a core component, the intelligent resistance band system demonstrates cyclic stability exceeding 120,000 cycles and torsional insensitivity, facilitating hyperstable velocimetry within the 0–2.5 m/s range with an accuracy exceeding 95%. This system is capable of capturing instantaneous training parameters, including velocity, tension, and power during cyclic resistance training, as well as performing dynamic evaluations and providing early warnings for overspeed or fatigue. A comparative experiment with and without feedback guidance from the intelligent resistance band system verified that its precise feedback significantly elevates training intensity, explosive performance, and movement compliance while reducing injury risk. Given its compact design, real-time sensing and evaluation of highly accurate multidimensional training parameters, and hyperstability, this system potentially advances training digitisation and sports intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小风吹着完成签到,获得积分10
1秒前
共享精神应助不吃香菜采纳,获得10
1秒前
1秒前
1秒前
领导范儿应助成就的沛菡采纳,获得10
2秒前
2秒前
傅姐完成签到 ,获得积分10
2秒前
小正关注了科研通微信公众号
2秒前
RowanLuo完成签到,获得积分10
3秒前
西瓜完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
aaron发布了新的文献求助10
4秒前
敏er好学完成签到,获得积分10
4秒前
搜集达人应助甜蜜靖雁采纳,获得10
4秒前
SciGPT应助lililu采纳,获得10
5秒前
动人的莞发布了新的文献求助10
6秒前
英俊的铭应助被划分采纳,获得10
7秒前
聆听完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
甜甜雁荷完成签到,获得积分10
9秒前
9秒前
9秒前
丘比特应助huohuo采纳,获得30
9秒前
10秒前
新酱不爱吃青椒完成签到 ,获得积分10
10秒前
爆炸米花完成签到,获得积分10
10秒前
10秒前
蒋大饼发布了新的文献求助10
11秒前
11秒前
yadan完成签到,获得积分10
11秒前
白紫莹完成签到,获得积分10
11秒前
天天快乐应助ccmxigua采纳,获得10
11秒前
脑洞疼应助3220211483采纳,获得10
12秒前
12秒前
crispy发布了新的文献求助10
13秒前
kk发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655064
求助须知:如何正确求助?哪些是违规求助? 4796943
关于积分的说明 15071571
捐赠科研通 4813634
什么是DOI,文献DOI怎么找? 2575243
邀请新用户注册赠送积分活动 1530632
关于科研通互助平台的介绍 1489263