Self‐Cleaning Superhydrophilic Membranes via Eco‐Friendly Modification for High Flux Oil–water Separation

作者
Shou Li,Siyi He,Tianze Zhang,Xiangyun Cheng,Shiqi Sun,Shangzhen Xie,Xingchi Jiang,Muneerah Alomar,Zhiguang Guo
出处
期刊:Small methods [Wiley]
卷期号:: e01175-e01175
标识
DOI:10.1002/smtd.202501175
摘要

Abstract Superhydrophilic membranes hold significant promise for oil/water separation in effluent treatment due to their exceptional separation efficiency and inherent anti‐oil properties. However, persistent challenges such as irreversible membrane fouling and complex cleaning procedures caused by oil ingress during operation remain unresolved. While extensive research has explored diverse substrates, such as stainless steel mesh, polysulfone ultrafiltration membranes, and copper mesh, conventional fabrication methods often rely on environmentally hazardous processes, such as chemical etching or intricate substrate engineering, to achieve robust adhesion between substrates and superhydrophilic coatings. Furthermore, existing strategies for emulsified oil separation frequently compromise flux efficiency. To address these limitations, this study introduces a laser‐assisted morphogenetic fabrication technique to create an antifouling, scale‐like substrate. A biodegradable, nontoxic chitosan modification layer is integrated via binding sites, enhancing interfacial adhesion while optimizing mechanical stability and coating porosity. The resultant membrane exhibits self‐cleaning functionality alongside superhydrophilicity, achieving a sustained flux of 59 683.103 L m − 2 h −1 and maintaining >99.996% separation efficiency over 100 cycles. The mild, eco‐friendly synthesis process and the membrane's superior performance underscore its potential for scalable application in sustainable oil/water separation. This work advances the rational design of durable superhydrophilic coatings and offers a viable pathway for developing high‐flux, antifouling separation technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sinner完成签到,获得积分10
刚刚
刚刚
刚刚
森海完成签到,获得积分10
1秒前
1秒前
顺顺尼发布了新的文献求助10
1秒前
2秒前
NexusExplorer应助HHZ采纳,获得10
3秒前
万能图书馆应助鸭梨散打采纳,获得10
3秒前
Cu发布了新的文献求助10
4秒前
呜呜呜啦完成签到,获得积分10
4秒前
4秒前
初生西红柿完成签到,获得积分10
4秒前
bkagyin应助llli采纳,获得10
5秒前
小十一完成签到 ,获得积分10
5秒前
xu完成签到 ,获得积分10
5秒前
可乐会冒泡完成签到,获得积分20
5秒前
故城发布了新的文献求助10
6秒前
6秒前
小李完成签到,获得积分20
6秒前
7秒前
7秒前
科目三应助真实的板凳采纳,获得10
8秒前
章半仙完成签到,获得积分10
8秒前
9秒前
RianaSun完成签到,获得积分10
11秒前
小马甲应助pigzhu采纳,获得10
11秒前
11秒前
李健的小迷弟应助irenechen采纳,获得10
11秒前
狂野的友灵完成签到 ,获得积分10
12秒前
今后应助顶刊创作者采纳,获得10
14秒前
香蕉觅云应助淡然寄瑶采纳,获得10
14秒前
342396102发布了新的文献求助10
15秒前
kokaine完成签到,获得积分10
15秒前
Echo发布了新的文献求助20
15秒前
叶迎发布了新的文献求助10
17秒前
17秒前
真实的板凳完成签到,获得积分20
17秒前
irenechen完成签到,获得积分20
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606007
求助须知:如何正确求助?哪些是违规求助? 4690472
关于积分的说明 14863982
捐赠科研通 4703318
什么是DOI,文献DOI怎么找? 2542392
邀请新用户注册赠送积分活动 1507915
关于科研通互助平台的介绍 1472168