In the Pursuit of the Optimal Path to Motor Competence: A Decision Tree-Based Approach

作者
Sergio Montalt-García,Gonzalo Monfort-Torres,Mario Tudela-Petit,Adrià Marco-Ahulló,Xavier García‐Massó,Isaac Estevan
出处
期刊:Research Quarterly for Exercise and Sport [Informa]
卷期号:: 1-11
标识
DOI:10.1080/02701367.2025.2566952
摘要

Motor competence (MC) is a multifaceted construct influenced by physical, behavioral, emotional, and environmental factors. Its development plays a pivotal role in physical activity participation, health, and well-being. However, the complex, non-linear interplay among these determinants remains underexplored. This study aimed to identify multivariate profiles according to multiple correlates that predict levels of MC in primary school children using a decision tree-based classification model. A cross-sectional sample of 676 children aged 8-12 from five public schools in Valencia, Spain, was assessed on a comprehensive array of variables, including actual MC, physical fitness, anthropometry, motivation, perceived MC, physical literacy, social support, and sedentary behavior. A two-stage hierarchical decision tree model was applied to classify children based on their MC levels. The initial tree identified key predictors of low MC, with cardiovascular endurance and self-determined motivation as dominant discriminators. A secondary tree further refined classifications among ambiguous profiles. Notably, low cardiovascular endurance emerged as a major limiting factor, with few children overcoming its influence despite positive psychological attributes. Conversely, high MC was associated with positive combinations of fitness, motivation, controlled sedentary behavior, and supportive environments. Findings underscore the utility of decision tree models in capturing the nonlinear, multidimensional nature of MC development. Tailored interventions addressing clusters of risk or protective factors are essential to promote motor development and physical literacy in diverse child populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yan发布了新的文献求助20
1秒前
小二郎应助小糊涂采纳,获得10
1秒前
wan发布了新的文献求助10
1秒前
orixero应助热情的咖啡豆采纳,获得10
1秒前
英姑应助有你就足够采纳,获得10
2秒前
2秒前
脑洞疼应助深情夏彤采纳,获得10
3秒前
杏林靴子完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
领导范儿应助崽崽采纳,获得10
5秒前
merry关注了科研通微信公众号
6秒前
7秒前
7秒前
7秒前
8秒前
万灵竹完成签到,获得积分10
8秒前
xixi发布了新的文献求助10
9秒前
万灵竹发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
小汤完成签到,获得积分10
11秒前
liuhuayaxi发布了新的文献求助10
12秒前
lxl完成签到,获得积分10
13秒前
CipherSage应助hhl采纳,获得10
13秒前
高贵冷松完成签到,获得积分10
13秒前
Jasper应助普鲁斯特采纳,获得10
13秒前
13秒前
14秒前
小糊涂发布了新的文献求助10
14秒前
淡然的尔珍完成签到,获得积分10
14秒前
16秒前
miaomiao发布了新的文献求助10
17秒前
李N发布了新的文献求助10
17秒前
17秒前
Owen应助lxl采纳,获得10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186