亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of the sarcopenia in peritoneal dialysis using simple clinical information: A machine learning‐based model

肌萎缩 医学 生物电阻抗分析 握力 体质指数 腹膜透析 瘦体质量 内科学 体液 物理疗法 体重
作者
Jiaying Wu,Shuangxiang Lin,Jichao Guan,Xiujuan Wu,Miaojia Ding,Shuijuan Shen
出处
期刊:Seminars in Dialysis [Wiley]
卷期号:36 (5): 390-398 被引量:18
标识
DOI:10.1111/sdi.13131
摘要

Abstract Introduction Sarcopenia is associated with significant cardiovascular risk, and death in patients undergoing peritoneal dialysis (PD). Three tools are used for diagnosing sarcopenia. The evaluation of muscle mass requires dual energy X‐ray absorptiometry (DXA) or computed tomography (CT), which is labor‐intensive and relatively expensive. This study aimed to use simple clinical information to develop a machine learning (ML)‐based prediction model of PD sarcopenia. Methods According to the newly revised Asian Working Group for Sarcopenia (AWGS2019), patients were subjected to complete sarcopenia screening, including appendicular skeletal muscle mass, grip strength, and five‐time chair stand time test. Simple clinical information such as general information, dialysis‐related indices, irisin and other laboratory indices, and bioelectrical impedance analysis (BIA) data were collected. All data were randomly split into training (70%) and testing (30%) sets. Difference, correlation, univariate, and multivariate analyses were used to identify core features significantly associated with PD sarcopenia. Result 12 core features (C), namely, grip strength, body mass index (BMI), total body water value, irisin, extracellular water/total body water, fat‐free mass index, phase angle, albumin/globulin, blood phosphorus, total cholesterol, triglyceride, and prealbumin were excavated for model construction. Two ML models, the neural network (NN), and support vector machine (SVM) were selected with tenfold cross‐validation to determine the optimal parameter. The C‐SVM model showed a higher area under the curve (AUC) of 0.82 (95% confidence interval [CI]: 0.67–1.00), with a highest specificity of 0.96, sensitivity of 0.91, positive predictive value (PPV) of 0.96, and negative predictive value (NPV) of 0.91. Conclusion The ML model effectively predicted PD sarcopenia and has clinical potential to be used as a convenient sarcopenia screening tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的师发布了新的文献求助10
5秒前
复杂的孤容完成签到,获得积分10
7秒前
独特的师完成签到,获得积分10
21秒前
31秒前
浮游应助科研通管家采纳,获得10
57秒前
浮游应助科研通管家采纳,获得10
57秒前
1分钟前
猪猪侠完成签到,获得积分10
1分钟前
猪猪侠发布了新的文献求助10
1分钟前
2分钟前
2分钟前
SciGPT应助流水不争先采纳,获得10
2分钟前
大意的绿蓉完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
自信人生二百年完成签到,获得积分10
3分钟前
阳光的丹雪完成签到,获得积分10
3分钟前
1461644768完成签到,获得积分10
4分钟前
Fairy完成签到,获得积分10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
忆茶戏完成签到 ,获得积分10
5分钟前
科研通AI2S应助huizi采纳,获得10
5分钟前
5分钟前
huizi发布了新的文献求助10
5分钟前
5分钟前
huizi发布了新的文献求助10
6分钟前
huizi完成签到,获得积分10
6分钟前
6分钟前
科研通AI6应助wonder采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
7分钟前
8分钟前
隐形曼青应助雨天有伞采纳,获得10
8分钟前
草木完成签到 ,获得积分10
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
浮游应助科研通管家采纳,获得10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
ataybabdallah完成签到,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463401
求助须知:如何正确求助?哪些是违规求助? 4568113
关于积分的说明 14312485
捐赠科研通 4494135
什么是DOI,文献DOI怎么找? 2462121
邀请新用户注册赠送积分活动 1451045
关于科研通互助平台的介绍 1426373