High-Order Semantic Decoupling Network for Remote Sensing Image Semantic Segmentation

计算机科学 人工智能 图像分割 分割 计算机视觉 语义计算 遥感 解耦(概率) 语义网 地质学 工程类 控制工程
作者
Chengyu Zheng,Jie Nie,Zhaoxin Wang,Ning Song,Jingyu Wang,Zhiqiang Wei
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:15
标识
DOI:10.1109/tgrs.2023.3249230
摘要

Low-order features based on convolution kernel are easy to be distorted when encountering dramatic view angle transformation and atmospheric scattering in remote sensing (RS) images. To address this concern, this article first proposes to operate semantic segmentation of RS images based on the high-order information, which can represent the relative relationship of low-order features and is robust and stable when suffering feature distortion. Besides, semantic decouples have recently been well researched and have achieved significant improvement in image understanding. Thus, in this article, a high-order semantic decoupling network (HSDN) is proposed to disentangle features by semantics based on high-order features. Specifically, HSDN first represents each pixel by calculating the pixel-level affinity as a high-order feature and then clusters these pixels into different semantics. Afterward, an attention-like mask generation module is designed for both intra-semantic and inter-semantic groups, leading to three kinds of masks, including the semantic decoupling mask (SDM), which utilizes each high-order cluster centroid as a mask to compact features intracluster and expand different interclusters, so as to improve semantic disentangle performance to a better extent; semantic enhancement mask (SEM), which records pixel-level relative correlation within a class to sufficiently exploit high-order features and could enhance feature robustness; and boundary supplementary mask (BSM), which aims to process borderline pixels to reduce cluster errors. Finally, by applying masks on pixels both within classes and on borderlines, semantic decoupled features are generated and concatenated to realize segmentation. The quantitative and qualitative experiments are conducted on two large-scale fine-resolution RS image datasets to demonstrate the significant performance of adopting high-order representation. Besides, we also implement numerous experiments to validate the effectiveness of the proposed semantic decouple framework in dealing with complicated and distortion-prone RS image segmentation tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的觅海完成签到 ,获得积分10
刚刚
风趣霆发布了新的文献求助10
刚刚
斯文败类应助cldg采纳,获得10
1秒前
小戴发布了新的文献求助10
2秒前
lxc完成签到,获得积分10
2秒前
苏航完成签到,获得积分20
2秒前
Auston_zhong应助飞快的雨琴采纳,获得10
3秒前
我要毕业发布了新的文献求助30
3秒前
3秒前
韭菜发布了新的文献求助10
4秒前
梨涡远点完成签到 ,获得积分10
4秒前
顺心的筮发布了新的文献求助10
4秒前
didi完成签到,获得积分20
4秒前
4秒前
DongWei95完成签到,获得积分10
4秒前
月夕完成签到 ,获得积分10
5秒前
Lucas应助热心的皮采纳,获得10
6秒前
小戴完成签到,获得积分10
6秒前
罐装冰块完成签到,获得积分10
6秒前
7秒前
英俊的铭应助甜甜信封采纳,获得20
7秒前
陈皮有远志完成签到,获得积分10
7秒前
库里强发布了新的文献求助10
8秒前
852应助韭菜采纳,获得10
8秒前
Liou应助lizhiqian2024采纳,获得10
9秒前
阿静发布了新的文献求助10
9秒前
9秒前
yc发布了新的文献求助10
9秒前
REN发布了新的文献求助10
10秒前
无花果应助knn采纳,获得10
10秒前
serendipity完成签到,获得积分10
10秒前
111发布了新的文献求助20
11秒前
斯文黎云完成签到,获得积分20
11秒前
11秒前
11秒前
12秒前
乐乐应助redtom采纳,获得10
12秒前
美美哒发布了新的文献求助10
12秒前
番茄关注了科研通微信公众号
13秒前
黑摄会阿Fay完成签到,获得积分10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804892
求助须知:如何正确求助?哪些是违规求助? 3349972
关于积分的说明 10346579
捐赠科研通 3065797
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808810
科研通“疑难数据库(出版商)”最低求助积分说明 764978