A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study

痴呆 深度学习 视网膜 疾病 医学 人工智能 计算机科学 眼科 病理
作者
Carol Y. Cheung,An Ran Ran,Shujun Wang,Victor T.T. Chan,Kaiser Sham,Saima Hilal,Narayanaswamy Venketasubramanian,Ching‐Yu Cheng,Charumathi Sabanayagam,Yih‐Chung Tham,Leopold Schmetterer,Gareth J. McKay,Michael Williams,Adrian Wong,Lisa Au,Zhihui Lu,Jason C. Yam,Clement C. Tham,John J. Chen,Oana M. Dumitrascu,Pheng‐Ann Heng,Timothy Kwok,Vincent Mok,Dan Miléa,Christopher Chen,Tien Yin Wong
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (11): e806-e815 被引量:115
标识
DOI:10.1016/s2589-7500(22)00169-8
摘要

There is no simple model to screen for Alzheimer's disease, partly because the diagnosis of Alzheimer's disease itself is complex-typically involving expensive and sometimes invasive tests not commonly available outside highly specialised clinical settings. We aimed to develop a deep learning algorithm that could use retinal photographs alone, which is the most common method of non-invasive imaging the retina to detect Alzheimer's disease-dementia.In this retrospective, multicentre case-control study, we trained, validated, and tested a deep learning algorithm to detect Alzheimer's disease-dementia from retinal photographs using retrospectively collected data from 11 studies that recruited patients with Alzheimer's disease-dementia and people without disease from different countries. Our main aim was to develop a bilateral model to detect Alzheimer's disease-dementia from retinal photographs alone. We designed and internally validated the bilateral deep learning model using retinal photographs from six studies. We used the EfficientNet-b2 network as the backbone of the model to extract features from the images. Integrated features from four retinal photographs (optic nerve head-centred and macula-centred fields from both eyes) for each individual were used to develop supervised deep learning models and equip the network with unsupervised domain adaptation technique, to address dataset discrepancy between the different studies. We tested the trained model using five other studies, three of which used PET as a biomarker of significant amyloid β burden (testing the deep learning model between amyloid β positive vs amyloid β negative).12 949 retinal photographs from 648 patients with Alzheimer's disease and 3240 people without the disease were used to train, validate, and test the deep learning model. In the internal validation dataset, the deep learning model had 83·6% (SD 2·5) accuracy, 93·2% (SD 2·2) sensitivity, 82·0% (SD 3·1) specificity, and an area under the receiver operating characteristic curve (AUROC) of 0·93 (0·01) for detecting Alzheimer's disease-dementia. In the testing datasets, the bilateral deep learning model had accuracies ranging from 79·6% (SD 15·5) to 92·1% (11·4) and AUROCs ranging from 0·73 (SD 0·24) to 0·91 (0·10). In the datasets with data on PET, the model was able to differentiate between participants who were amyloid β positive and those who were amyloid β negative: accuracies ranged from 80·6 (SD 13·4%) to 89·3 (13·7%) and AUROC ranged from 0·68 (SD 0·24) to 0·86 (0·16). In subgroup analyses, the discriminative performance of the model was improved in patients with eye disease (accuracy 89·6% [SD 12·5%]) versus those without eye disease (71·7% [11·6%]) and patients with diabetes (81·9% [SD 20·3%]) versus those without the disease (72·4% [11·7%]).A retinal photograph-based deep learning algorithm can detect Alzheimer's disease with good accuracy, showing its potential for screening Alzheimer's disease in a community setting.BrightFocus Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山城小丸发布了新的文献求助10
刚刚
传奇3应助103921wjk采纳,获得10
1秒前
李剑鸿发布了新的文献求助30
1秒前
星辰大海应助小赵采纳,获得10
1秒前
2秒前
森气发布了新的文献求助30
4秒前
莎莎士比亚完成签到,获得积分10
5秒前
5秒前
9秒前
ronnie发布了新的文献求助10
9秒前
无花果应助Krapanda采纳,获得10
14秒前
16秒前
103921wjk发布了新的文献求助10
16秒前
17秒前
卡卡完成签到,获得积分10
20秒前
22秒前
ronnie完成签到,获得积分10
24秒前
ai发布了新的文献求助10
25秒前
27秒前
28秒前
hzs发布了新的文献求助10
29秒前
老程完成签到,获得积分10
30秒前
30秒前
Krapanda发布了新的文献求助10
33秒前
小鱼关注了科研通微信公众号
34秒前
34秒前
ajing完成签到,获得积分10
34秒前
发论文发布了新的文献求助20
35秒前
懒懒大王完成签到,获得积分10
38秒前
38秒前
落后醉易发布了新的文献求助10
38秒前
饱满含玉完成签到,获得积分10
39秒前
41秒前
香蕉觅云应助英俊鼠标采纳,获得10
41秒前
43秒前
情怀应助孙宇采纳,获得10
44秒前
45秒前
45秒前
李健应助sure采纳,获得10
46秒前
CodeCraft应助落后醉易采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778882
求助须知:如何正确求助?哪些是违规求助? 3324413
关于积分的说明 10218351
捐赠科研通 3039488
什么是DOI,文献DOI怎么找? 1668198
邀请新用户注册赠送积分活动 798570
科研通“疑难数据库(出版商)”最低求助积分说明 758440