已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study

痴呆 深度学习 视网膜 疾病 医学 人工智能 计算机科学 眼科 病理
作者
Carol Y. Cheung,An Ran Ran,Shujun Wang,Victor T.T. Chan,Kaiser Sham,Saima Hilal,Narayanaswamy Venketasubramanian,Ching‐Yu Cheng,Charumathi Sabanayagam,Yih Chung Tham,Leopold Schmetterer,Gareth J. McKay,Michael Williams,Adrian Wong,Lisa Au,Zhihui Lu,Jason C. Yam,Clement C. Tham,John J. Chen,Oana M. Dumitrascu
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (11): e806-e815 被引量:171
标识
DOI:10.1016/s2589-7500(22)00169-8
摘要

There is no simple model to screen for Alzheimer's disease, partly because the diagnosis of Alzheimer's disease itself is complex-typically involving expensive and sometimes invasive tests not commonly available outside highly specialised clinical settings. We aimed to develop a deep learning algorithm that could use retinal photographs alone, which is the most common method of non-invasive imaging the retina to detect Alzheimer's disease-dementia.In this retrospective, multicentre case-control study, we trained, validated, and tested a deep learning algorithm to detect Alzheimer's disease-dementia from retinal photographs using retrospectively collected data from 11 studies that recruited patients with Alzheimer's disease-dementia and people without disease from different countries. Our main aim was to develop a bilateral model to detect Alzheimer's disease-dementia from retinal photographs alone. We designed and internally validated the bilateral deep learning model using retinal photographs from six studies. We used the EfficientNet-b2 network as the backbone of the model to extract features from the images. Integrated features from four retinal photographs (optic nerve head-centred and macula-centred fields from both eyes) for each individual were used to develop supervised deep learning models and equip the network with unsupervised domain adaptation technique, to address dataset discrepancy between the different studies. We tested the trained model using five other studies, three of which used PET as a biomarker of significant amyloid β burden (testing the deep learning model between amyloid β positive vs amyloid β negative).12 949 retinal photographs from 648 patients with Alzheimer's disease and 3240 people without the disease were used to train, validate, and test the deep learning model. In the internal validation dataset, the deep learning model had 83·6% (SD 2·5) accuracy, 93·2% (SD 2·2) sensitivity, 82·0% (SD 3·1) specificity, and an area under the receiver operating characteristic curve (AUROC) of 0·93 (0·01) for detecting Alzheimer's disease-dementia. In the testing datasets, the bilateral deep learning model had accuracies ranging from 79·6% (SD 15·5) to 92·1% (11·4) and AUROCs ranging from 0·73 (SD 0·24) to 0·91 (0·10). In the datasets with data on PET, the model was able to differentiate between participants who were amyloid β positive and those who were amyloid β negative: accuracies ranged from 80·6 (SD 13·4%) to 89·3 (13·7%) and AUROC ranged from 0·68 (SD 0·24) to 0·86 (0·16). In subgroup analyses, the discriminative performance of the model was improved in patients with eye disease (accuracy 89·6% [SD 12·5%]) versus those without eye disease (71·7% [11·6%]) and patients with diabetes (81·9% [SD 20·3%]) versus those without the disease (72·4% [11·7%]).A retinal photograph-based deep learning algorithm can detect Alzheimer's disease with good accuracy, showing its potential for screening Alzheimer's disease in a community setting.BrightFocus Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcr163应助null采纳,获得200
2秒前
2秒前
3秒前
郭嘉仪发布了新的文献求助10
3秒前
快乐梦菡完成签到 ,获得积分10
4秒前
4秒前
斯文败类应助满意若灵采纳,获得10
5秒前
宣墨完成签到,获得积分10
5秒前
QiongYin_123完成签到 ,获得积分10
6秒前
ok完成签到,获得积分10
6秒前
美琦完成签到,获得积分10
6秒前
mqq完成签到 ,获得积分10
6秒前
7秒前
易大人完成签到 ,获得积分10
8秒前
Ssshumiao发布了新的文献求助10
9秒前
王二饼发布了新的文献求助10
9秒前
11秒前
hserh完成签到,获得积分10
11秒前
梦华完成签到 ,获得积分10
11秒前
shichen完成签到 ,获得积分10
12秒前
Karol发布了新的文献求助10
12秒前
打打应助宣墨采纳,获得10
13秒前
HuY完成签到 ,获得积分10
13秒前
简单的沛蓝完成签到 ,获得积分10
14秒前
15秒前
平常以云完成签到 ,获得积分10
16秒前
Evy发布了新的文献求助10
17秒前
18秒前
19秒前
NSS完成签到,获得积分10
19秒前
梁馨月完成签到,获得积分10
20秒前
20秒前
奋斗的小笼包完成签到 ,获得积分10
20秒前
妖九笙完成签到 ,获得积分10
21秒前
21秒前
岚羽完成签到 ,获得积分10
23秒前
Xumeiling完成签到 ,获得积分10
23秒前
微光熠发布了新的文献求助10
24秒前
清爽的大树完成签到,获得积分10
24秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5030136
求助须知:如何正确求助?哪些是违规求助? 4265369
关于积分的说明 13297477
捐赠科研通 4074048
什么是DOI,文献DOI怎么找? 2228275
邀请新用户注册赠送积分活动 1236971
关于科研通互助平台的介绍 1161225