已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study

痴呆 深度学习 视网膜 疾病 医学 人工智能 计算机科学 眼科 病理
作者
Carol Y. Cheung,An Ran Ran,Shujun Wang,Victor T.T. Chan,Kaiser Sham,Saima Hilal,Narayanaswamy Venketasubramanian,Ching‐Yu Cheng,Charumathi Sabanayagam,Yih‐Chung Tham,Leopold Schmetterer,Gareth J. McKay,Michael Williams,Adrian Wong,Lisa Au,Zhihui Lu,Jason C. Yam,Clement C. Tham,John J. Chen,Oana M. Dumitrascu
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (11): e806-e815 被引量:143
标识
DOI:10.1016/s2589-7500(22)00169-8
摘要

There is no simple model to screen for Alzheimer's disease, partly because the diagnosis of Alzheimer's disease itself is complex-typically involving expensive and sometimes invasive tests not commonly available outside highly specialised clinical settings. We aimed to develop a deep learning algorithm that could use retinal photographs alone, which is the most common method of non-invasive imaging the retina to detect Alzheimer's disease-dementia.In this retrospective, multicentre case-control study, we trained, validated, and tested a deep learning algorithm to detect Alzheimer's disease-dementia from retinal photographs using retrospectively collected data from 11 studies that recruited patients with Alzheimer's disease-dementia and people without disease from different countries. Our main aim was to develop a bilateral model to detect Alzheimer's disease-dementia from retinal photographs alone. We designed and internally validated the bilateral deep learning model using retinal photographs from six studies. We used the EfficientNet-b2 network as the backbone of the model to extract features from the images. Integrated features from four retinal photographs (optic nerve head-centred and macula-centred fields from both eyes) for each individual were used to develop supervised deep learning models and equip the network with unsupervised domain adaptation technique, to address dataset discrepancy between the different studies. We tested the trained model using five other studies, three of which used PET as a biomarker of significant amyloid β burden (testing the deep learning model between amyloid β positive vs amyloid β negative).12 949 retinal photographs from 648 patients with Alzheimer's disease and 3240 people without the disease were used to train, validate, and test the deep learning model. In the internal validation dataset, the deep learning model had 83·6% (SD 2·5) accuracy, 93·2% (SD 2·2) sensitivity, 82·0% (SD 3·1) specificity, and an area under the receiver operating characteristic curve (AUROC) of 0·93 (0·01) for detecting Alzheimer's disease-dementia. In the testing datasets, the bilateral deep learning model had accuracies ranging from 79·6% (SD 15·5) to 92·1% (11·4) and AUROCs ranging from 0·73 (SD 0·24) to 0·91 (0·10). In the datasets with data on PET, the model was able to differentiate between participants who were amyloid β positive and those who were amyloid β negative: accuracies ranged from 80·6 (SD 13·4%) to 89·3 (13·7%) and AUROC ranged from 0·68 (SD 0·24) to 0·86 (0·16). In subgroup analyses, the discriminative performance of the model was improved in patients with eye disease (accuracy 89·6% [SD 12·5%]) versus those without eye disease (71·7% [11·6%]) and patients with diabetes (81·9% [SD 20·3%]) versus those without the disease (72·4% [11·7%]).A retinal photograph-based deep learning algorithm can detect Alzheimer's disease with good accuracy, showing its potential for screening Alzheimer's disease in a community setting.BrightFocus Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yyy发布了新的文献求助10
1秒前
大模型应助Yuu采纳,获得10
1秒前
李李李发布了新的文献求助10
2秒前
3秒前
JamesPei应助平淡雅阳采纳,获得10
3秒前
DocLSQ发布了新的文献求助10
3秒前
3秒前
3秒前
prof.zhang完成签到,获得积分20
4秒前
chebo发布了新的文献求助10
6秒前
8秒前
8秒前
萧萧发布了新的文献求助50
8秒前
李李李完成签到,获得积分10
10秒前
logo发布了新的文献求助10
10秒前
SHI完成签到,获得积分10
12秒前
AAAB发布了新的文献求助10
13秒前
dusai发布了新的文献求助10
13秒前
风车发布了新的文献求助250
14秒前
春申君完成签到 ,获得积分10
16秒前
kid1912完成签到,获得积分0
18秒前
18秒前
xxttt完成签到,获得积分10
18秒前
Yuu完成签到,获得积分10
19秒前
19秒前
20秒前
研友_VZG7GZ应助孙意冉采纳,获得10
20秒前
深情安青应助DocLSQ采纳,获得10
21秒前
郦稀完成签到,获得积分10
22秒前
ding应助12采纳,获得10
23秒前
木木圆发布了新的文献求助10
23秒前
平淡雅阳发布了新的文献求助10
24秒前
25秒前
三月发布了新的文献求助10
27秒前
28秒前
29秒前
30秒前
30秒前
31秒前
红日阳光发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972482
求助须知:如何正确求助?哪些是违规求助? 3516947
关于积分的说明 11185420
捐赠科研通 3252357
什么是DOI,文献DOI怎么找? 1796400
邀请新用户注册赠送积分活动 876373
科研通“疑难数据库(出版商)”最低求助积分说明 805544