吸附
化学
纳米复合材料
埃洛石
水溶液中的金属离子
咪唑酯
沸石咪唑盐骨架
朗缪尔吸附模型
金属
化学工程
离子交换
离子
无机化学
核化学
金属有机骨架
有机化学
工程类
作者
Linhong Jiao,Huixia Feng,Nali Chen
摘要
In this study, polymeric nanocomposites of zeolitic imidazolate frameworks (ZIFs) were synthesized by assembly of a biomimetic polymer-polydopamine (PDA)onto halloysite nanotubes (HNTs@PDA), followed by the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on the surface of HNTs@PDA. The obtained nanocomposites (HNTs@PDA/ZIF-8) prevented agglomeration of ZIFs and increased the number of active sites derived from PDA. The factors influencing heavy metal ions (Pb2+, Cd2+, Cu2+, and Ni2+) adsorption by HNTs@PDA/ZIF-8 were discussed. The Langmuir model was able to well describe the adsorption, and the maximum adsorption capacity of HNTs@PDA/ZIF-8 was calculated to be 285.00 mg/g for Cu2+, 515.00 mg/g for Pb2+, 185 mg/g for Cd2+ and 112.5 mg/g for Ni2+. Thermodynamic parameters confirmed that the adsorption was exothermic and spontaneous. Moreover, HNTs@PDA/ZIF-8 has good regenerability, which is very important in practical applications. The adsorption mechanism study showed that electrostatic attraction, coordination reactions and ion-exchange were the main mechanisms between the adsorbents and heavy metal ions. Hence, HNTs@PDA/ZIF-8 is a promising candidate for removing heavy metal ions from wastewater.
科研通智能强力驱动
Strongly Powered by AbleSci AI