振动
衰减
带隙
波段图
频带
声学
格子(音乐)
拓扑(电路)
物理
凝聚态物理
光学
工程类
电信
带宽(计算)
电气工程
作者
Bin Wang,Hongyun Yang,Jun Li,Zhi‐Chang Qin,Yongtao Sun,Xiaofeng Li,Ying Xin,Hongge Han,Chen Sun
标识
DOI:10.1080/15376494.2023.2231944
摘要
In order to reduce vibration and noise with wide frequency, a new extended arrow tetragonal lattice topology is proposed. The band gap characteristics are discussed by combining the finite element method and Bloch's theorem. The generation principle of band gap is explained by vibration mode analysis. By topological optimization of the structure, band gap has obvious optimization effect. The propagation characteristics of elastic waves with a specific frequency in the structure are studied from the point of view of energy. Finally, the band gap frequency range is compared with the transmission function, and the stress cloud diagram is analyzed. The research shows that the structure has good band gaps and can play a good role in vibration and noise reduction. Through the topological design of the structure, the band gap frequency range of the structure is optimized, which provides a new design idea for wide frequency vibration attenuation.
科研通智能强力驱动
Strongly Powered by AbleSci AI