Application of Artificial Intelligence in Drug–Drug Interactions Prediction: A Review

计算机科学 机器学习 人工智能 药品 医学 药理学
作者
Yuanyuan Zhang,Zengqian Deng,Xiaoyu Xu,Yinfei Feng,Junliang Shang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (7): 2158-2173 被引量:31
标识
DOI:10.1021/acs.jcim.3c00582
摘要

Drug–drug interactions (DDI) are a critical aspect of drug research that can have adverse effects on patients and can lead to serious consequences. Predicting these events accurately can significantly improve clinicians' ability to make better decisions and establish optimal treatment regimens. However, manually detecting these interactions is time-consuming and labor-intensive. Utilizing the advancements in Artificial Intelligence (AI) is essential for achieving accurate forecasts of DDIs. In this review, DDI prediction tasks are classified into three types according to the type of DDI prediction: undirected DDI prediction, DDI events prediction, and Asymmetric DDI prediction. The paper then reviews the progress of AI for each of these three prediction tasks in DDI and provides a summary of the data sets used as well as the representative methods used in these three prediction directions. In this review, we aim to provide a comprehensive overview of drug interaction prediction. The first section introduces commonly used databases and presents an overview of current research advancements and techniques across three domains of DDI. Additionally, we introduce classical machine learning techniques for predicting undirected drug interactions and provide a timeline for the progression of the predicted drug interaction events. At last, we debate the difficulties and prospects of AI approaches at predicting DDI, emphasizing their potential for improving clinical decision-making and patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助舒物采纳,获得10
刚刚
mani完成签到,获得积分10
1秒前
桐桐应助pu采纳,获得10
1秒前
YiWei发布了新的文献求助10
1秒前
解安珊完成签到,获得积分10
1秒前
万能图书馆应助怕黑剑身采纳,获得10
1秒前
贩卖日落发布了新的文献求助10
1秒前
英姑应助Zyzpkilly采纳,获得10
1秒前
大白完成签到,获得积分10
2秒前
zc19891130发布了新的文献求助10
2秒前
3秒前
dandna完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
辛子发布了新的文献求助20
4秒前
顺儿完成签到,获得积分10
5秒前
非常可爱发布了新的文献求助10
5秒前
xol完成签到 ,获得积分10
5秒前
科研助手6应助优秀的冰姬采纳,获得10
6秒前
beauty_bear完成签到,获得积分10
7秒前
7秒前
y2ktwo完成签到,获得积分20
7秒前
科研通AI5应助麟钰采纳,获得10
7秒前
7秒前
脑洞疼应助粗犷的碧灵采纳,获得10
8秒前
英俊的铭应助kkqq采纳,获得10
8秒前
顾矜应助阿rain采纳,获得10
8秒前
生活不是电影完成签到,获得积分10
8秒前
姜酱酱酱发布了新的文献求助10
9秒前
萨尔莫斯完成签到,获得积分20
10秒前
10秒前
Ruiruirui发布了新的文献求助30
10秒前
bocky完成签到 ,获得积分10
10秒前
qq应助标致的藏花采纳,获得10
10秒前
11秒前
共享精神应助gehao采纳,获得10
11秒前
11秒前
ooo娜发布了新的文献求助10
13秒前
有一朵小玫瑰完成签到 ,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790327
求助须知:如何正确求助?哪些是违规求助? 3334999
关于积分的说明 10273058
捐赠科研通 3051472
什么是DOI,文献DOI怎么找? 1674703
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846